// try_from_into.rs // // TryFrom is a simple and safe type conversion that may fail in a controlled // way under some circumstances. Basically, this is the same as From. The main // difference is that this should return a Result type instead of the target // type itself. You can read more about it at // https://doc.rust-lang.org/std/convert/trait.TryFrom.html // // Execute `rustlings hint try_from_into` or use the `hint` watch subcommand for // a hint. use std::convert::{ TryFrom, TryInto }; #[derive(Debug, PartialEq)] struct Color { red: u8, green: u8, blue: u8, } // We will use this error type for these `TryFrom` conversions. #[derive(Debug, PartialEq)] enum IntoColorError { // Incorrect length of slice BadLen, // Integer conversion error IntConversion, } // Your task is to complete this implementation and return an Ok result of inner // type Color. You need to create an implementation for a tuple of three // integers, an array of three integers, and a slice of integers. // // Note that the implementation for tuple and array will be checked at compile // time, but the slice implementation needs to check the slice length! Also note // that correct RGB color values must be integers in the 0..=255 range. // Tuple implementation impl TryFrom<(i16, i16, i16)> for Color { type Error = IntoColorError; fn try_from(tuple: (i16, i16, i16)) -> Result { // * Create a closure that checks whether a value is within 0-255 (inclusive) // * This could be extracted elsewhere as it is used in all trait implementations let is_valid_range = |x: i16| (0..=255).contains(&x); // * All items in the tuple must be within range if is_valid_range(tuple.0) && is_valid_range(tuple.1) && is_valid_range(tuple.2) { Ok(Color { red: tuple.0 as u8, green: tuple.1 as u8, blue: tuple.2 as u8, }) } else { // * Notice we return the `IntConversion` error Err(IntoColorError::IntConversion) } } } // Array implementation impl TryFrom<[i16; 3]> for Color { type Error = IntoColorError; // * Arrays are fixed size in Rust. // * In this case there's no need to validade its length fn try_from(arr: [i16; 3]) -> Result { let is_valid_range = |x: i16| (0..=255).contains(&x); // * All items in the array must be within range if is_valid_range(arr[0]) && is_valid_range(arr[1]) && is_valid_range(arr[2]) { Ok(Color { red: arr[0] as u8, green: arr[1] as u8, blue: arr[2] as u8, }) } else { Err(IntoColorError::IntConversion) } } } // Slice implementation impl TryFrom<&[i16]> for Color { type Error = IntoColorError; fn try_from(slice: &[i16]) -> Result { let is_valid_range = |x: i16| (0..=255).contains(&x); // * Test the lenght of the slice first if slice.len() != 3 { return Err(IntoColorError::BadLen); } if is_valid_range(slice[0]) && is_valid_range(slice[1]) && is_valid_range(slice[2]) { Ok(Color { red: slice[0] as u8, green: slice[1] as u8, blue: slice[2] as u8, }) } else { Err(IntoColorError::IntConversion) } } } fn main() { // Use the `try_from` function let c1 = Color::try_from((183, 65, 14)); println!("{:?}", c1); // Since TryFrom is implemented for Color, we should be able to use TryInto let c2: Result = [183, 65, 14].try_into(); println!("{:?}", c2); let v = vec![183, 65, 14]; // With slice we should use `try_from` function let c3 = Color::try_from(&v[..]); println!("{:?}", c3); // or take slice within round brackets and use TryInto let c4: Result = (&v[..]).try_into(); println!("{:?}", c4); } #[cfg(test)] mod tests { use super::*; #[test] fn test_tuple_out_of_range_positive() { assert_eq!(Color::try_from((256, 1000, 10000)), Err(IntoColorError::IntConversion)); } #[test] fn test_tuple_out_of_range_negative() { assert_eq!(Color::try_from((-1, -10, -256)), Err(IntoColorError::IntConversion)); } #[test] fn test_tuple_sum() { assert_eq!(Color::try_from((-1, 255, 255)), Err(IntoColorError::IntConversion)); } #[test] fn test_tuple_correct() { let c: Result = (183, 65, 14).try_into(); assert!(c.is_ok()); assert_eq!(c.unwrap(), Color { red: 183, green: 65, blue: 14, }); } #[test] fn test_array_out_of_range_positive() { let c: Result = [1000, 10000, 256].try_into(); assert_eq!(c, Err(IntoColorError::IntConversion)); } #[test] fn test_array_out_of_range_negative() { let c: Result = [-10, -256, -1].try_into(); assert_eq!(c, Err(IntoColorError::IntConversion)); } #[test] fn test_array_sum() { let c: Result = [-1, 255, 255].try_into(); assert_eq!(c, Err(IntoColorError::IntConversion)); } #[test] fn test_array_correct() { let c: Result = [183, 65, 14].try_into(); assert!(c.is_ok()); assert_eq!(c.unwrap(), Color { red: 183, green: 65, blue: 14, }); } #[test] fn test_slice_out_of_range_positive() { let arr = [10000, 256, 1000]; assert_eq!(Color::try_from(&arr[..]), Err(IntoColorError::IntConversion)); } #[test] fn test_slice_out_of_range_negative() { let arr = [-256, -1, -10]; assert_eq!(Color::try_from(&arr[..]), Err(IntoColorError::IntConversion)); } #[test] fn test_slice_sum() { let arr = [-1, 255, 255]; assert_eq!(Color::try_from(&arr[..]), Err(IntoColorError::IntConversion)); } #[test] fn test_slice_correct() { let v = vec![183, 65, 14]; let c: Result = Color::try_from(&v[..]); assert!(c.is_ok()); assert_eq!(c.unwrap(), Color { red: 183, green: 65, blue: 14, }); } #[test] fn test_slice_excess_length() { let v = vec![0, 0, 0, 0]; assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen)); } #[test] fn test_slice_insufficient_length() { let v = vec![0, 0]; assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen)); } }