This commit is contained in:
Steven Johnson 2022-07-05 19:54:33 +12:00
parent 70423b9bef
commit ecd727a33d
16 changed files with 71 additions and 59 deletions

View File

@ -6,12 +6,10 @@
// check clippy's suggestions from the output to solve the exercise. // check clippy's suggestions from the output to solve the exercise.
// Execute `rustlings hint clippy1` for hints :) // Execute `rustlings hint clippy1` for hints :)
// I AM NOT DONE
use std::f32; use std::f32;
fn main() { fn main() {
let pi = 3.14f32; let pi = f32::consts::PI;
let radius = 5.00f32; let radius = 5.00f32;
let area = pi * f32::powi(radius, 2); let area = pi * f32::powi(radius, 2);

View File

@ -1,12 +1,10 @@
// clippy2.rs // clippy2.rs
// Make me compile! Execute `rustlings hint clippy2` for hints :) // Make me compile! Execute `rustlings hint clippy2` for hints :)
// I AM NOT DONE
fn main() { fn main() {
let mut res = 42; let mut res = 42;
let option = Some(12); let option = Some(12);
for x in option { if let Some(x) = option {
res += x; res += x;
} }
println!("{}", res); println!("{}", res);

View File

@ -2,17 +2,15 @@
// Read more about them at https://doc.rust-lang.org/std/convert/trait.AsRef.html // Read more about them at https://doc.rust-lang.org/std/convert/trait.AsRef.html
// and https://doc.rust-lang.org/std/convert/trait.AsMut.html, respectively. // and https://doc.rust-lang.org/std/convert/trait.AsMut.html, respectively.
// I AM NOT DONE
// Obtain the number of bytes (not characters) in the given argument // Obtain the number of bytes (not characters) in the given argument
// Add the AsRef trait appropriately as a trait bound // Add the AsRef trait appropriately as a trait bound
fn byte_counter<T>(arg: T) -> usize { fn byte_counter<T: AsRef<str>>(arg: T) -> usize {
arg.as_ref().as_bytes().len() arg.as_ref().as_bytes().len()
} }
// Obtain the number of characters (not bytes) in the given argument // Obtain the number of characters (not bytes) in the given argument
// Add the AsRef trait appropriately as a trait bound // Add the AsRef trait appropriately as a trait bound
fn char_counter<T>(arg: T) -> usize { fn char_counter<T: AsRef<str>>(arg: T) -> usize {
arg.as_ref().chars().count() arg.as_ref().chars().count()
} }

View File

@ -33,10 +33,18 @@ impl Default for Person {
// If while parsing the age, something goes wrong, then return the default of Person // If while parsing the age, something goes wrong, then return the default of Person
// Otherwise, then return an instantiated Person object with the results // Otherwise, then return an instantiated Person object with the results
// I AM NOT DONE
impl From<&str> for Person { impl From<&str> for Person {
fn from(s: &str) -> Person { fn from(s: &str) -> Person {
let (name, age) = s.split_once(",").unwrap_or_default();
if let Ok(age) = age.parse::<usize>() {
if name.len() > 0 {
return Person {
name: String::from(name),
age,
};
}
}
Default::default()
} }
} }

View File

@ -26,8 +26,6 @@ enum ParsePersonError {
ParseInt(ParseIntError), ParseInt(ParseIntError),
} }
// I AM NOT DONE
// Steps: // Steps:
// 1. If the length of the provided string is 0, an error should be returned // 1. If the length of the provided string is 0, an error should be returned
// 2. Split the given string on the commas present in it // 2. Split the given string on the commas present in it
@ -41,6 +39,20 @@ enum ParsePersonError {
impl FromStr for Person { impl FromStr for Person {
type Err = ParsePersonError; type Err = ParsePersonError;
fn from_str(s: &str) -> Result<Person, Self::Err> { fn from_str(s: &str) -> Result<Person, Self::Err> {
if s.is_empty() {
return Err(ParsePersonError::Empty);
}
let data: Vec<&str> = s.split(",").collect();
if data.len() != 2 {
return Err(ParsePersonError::BadLen);
}
let name: String = data[0].into();
if name.is_empty() {
return Err(ParsePersonError::NoName);
}
let age = data[1];
let age = age.parse::<usize>().map_err(ParsePersonError::ParseInt)?;
Ok(Person { name, age })
} }
} }

View File

@ -21,8 +21,6 @@ enum IntoColorError {
IntConversion, IntConversion,
} }
// I AM NOT DONE
// Your task is to complete this implementation // Your task is to complete this implementation
// and return an Ok result of inner type Color. // and return an Ok result of inner type Color.
// You need to create an implementation for a tuple of three integers, // You need to create an implementation for a tuple of three integers,
@ -36,6 +34,12 @@ enum IntoColorError {
impl TryFrom<(i16, i16, i16)> for Color { impl TryFrom<(i16, i16, i16)> for Color {
type Error = IntoColorError; type Error = IntoColorError;
fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> { fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {
let (r, g, b) = tuple;
Ok(Color {
red: u8::try_from(r).map_err(|_| IntoColorError::IntConversion)?,
green: u8::try_from(g).map_err(|_| IntoColorError::IntConversion)?,
blue: u8::try_from(b).map_err(|_| IntoColorError::IntConversion)?,
})
} }
} }
@ -43,6 +47,11 @@ impl TryFrom<(i16, i16, i16)> for Color {
impl TryFrom<[i16; 3]> for Color { impl TryFrom<[i16; 3]> for Color {
type Error = IntoColorError; type Error = IntoColorError;
fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> { fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {
Ok(Color {
red: u8::try_from(arr[0]).map_err(|_| IntoColorError::IntConversion)?,
green: u8::try_from(arr[1]).map_err(|_| IntoColorError::IntConversion)?,
blue: u8::try_from(arr[2]).map_err(|_| IntoColorError::IntConversion)?,
})
} }
} }
@ -50,6 +59,11 @@ impl TryFrom<[i16; 3]> for Color {
impl TryFrom<&[i16]> for Color { impl TryFrom<&[i16]> for Color {
type Error = IntoColorError; type Error = IntoColorError;
fn try_from(slice: &[i16]) -> Result<Self, Self::Error> { fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {
if slice.len() != 3 {
return Err(IntoColorError::BadLen);
}
let array = <[i16; 3]>::try_from(slice).unwrap();
Color::try_from(array)
} }
} }

View File

@ -5,11 +5,9 @@
// The goal is to make sure that the division does not fail to compile // The goal is to make sure that the division does not fail to compile
// and returns the proper type. // and returns the proper type.
// I AM NOT DONE
fn average(values: &[f64]) -> f64 { fn average(values: &[f64]) -> f64 {
let total = values.iter().sum::<f64>(); let total = values.iter().sum::<f64>();
total / values.len() total / values.len() as f64
} }
fn main() { fn main() {

View File

@ -1,8 +1,6 @@
// macros1.rs // macros1.rs
// Make me compile! Execute `rustlings hint macros1` for hints :) // Make me compile! Execute `rustlings hint macros1` for hints :)
// I AM NOT DONE
macro_rules! my_macro { macro_rules! my_macro {
() => { () => {
println!("Check out my macro!"); println!("Check out my macro!");
@ -10,5 +8,5 @@ macro_rules! my_macro {
} }
fn main() { fn main() {
my_macro(); my_macro!();
} }

View File

@ -1,14 +1,12 @@
// macros2.rs // macros2.rs
// Make me compile! Execute `rustlings hint macros2` for hints :) // Make me compile! Execute `rustlings hint macros2` for hints :)
// I AM NOT DONE
fn main() {
my_macro!();
}
macro_rules! my_macro { macro_rules! my_macro {
() => { () => {
println!("Check out my macro!"); println!("Check out my macro!");
}; };
} }
fn main() {
my_macro!();
}

View File

@ -2,9 +2,8 @@
// Make me compile, without taking the macro out of the module! // Make me compile, without taking the macro out of the module!
// Execute `rustlings hint macros3` for hints :) // Execute `rustlings hint macros3` for hints :)
// I AM NOT DONE
mod macros { mod macros {
#[macro_export]
macro_rules! my_macro { macro_rules! my_macro {
() => { () => {
println!("Check out my macro!"); println!("Check out my macro!");

View File

@ -1,15 +1,13 @@
// macros4.rs // macros4.rs
// Make me compile! Execute `rustlings hint macros4` for hints :) // Make me compile! Execute `rustlings hint macros4` for hints :)
// I AM NOT DONE
macro_rules! my_macro { macro_rules! my_macro {
() => { () => {
println!("Check out my macro!"); println!("Check out my macro!");
} };
($val:expr) => { ($val:expr) => {
println!("Look at this other macro: {}", $val); println!("Look at this other macro: {}", $val);
} };
} }
fn main() { fn main() {

View File

@ -5,7 +5,11 @@
// Write a macro that passes the quiz! No hints this time, you can do it! // Write a macro that passes the quiz! No hints this time, you can do it!
// I AM NOT DONE macro_rules! my_macro {
($val:expr) => {
format!("Hello {}", $val)
};
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {

View File

@ -6,8 +6,6 @@
// list_of_results functions. // list_of_results functions.
// Execute `rustlings hint iterators3` to get some hints! // Execute `rustlings hint iterators3` to get some hints!
// I AM NOT DONE
#[derive(Debug, PartialEq, Eq)] #[derive(Debug, PartialEq, Eq)]
pub enum DivisionError { pub enum DivisionError {
NotDivisible(NotDivisibleError), NotDivisible(NotDivisibleError),
@ -39,14 +37,14 @@ pub fn divide(a: i32, b: i32) -> Result<i32, DivisionError> {
// Desired output: Ok([1, 11, 1426, 3]) // Desired output: Ok([1, 11, 1426, 3])
fn result_with_list() -> Result<Vec<i32>, DivisionError> { fn result_with_list() -> Result<Vec<i32>, DivisionError> {
let numbers = vec![27, 297, 38502, 81]; let numbers = vec![27, 297, 38502, 81];
numbers.into_iter().map(|n| divide(n, 27)).collect(); numbers.into_iter().map(|n| divide(n, 27)).collect()
} }
// Complete the function and return a value of the correct type so the test passes. // Complete the function and return a value of the correct type so the test passes.
// Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)] // Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)]
fn list_of_results() -> () { fn list_of_results() -> Vec<Result<i32, DivisionError>> {
let numbers = vec![27, 297, 38502, 81]; let numbers = vec![27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27)); numbers.into_iter().map(|n| divide(n, 27)).collect()
} }
#[cfg(test)] #[cfg(test)]

View File

@ -1,17 +1,7 @@
// iterators4.rs // iterators4.rs
// I AM NOT DONE
pub fn factorial(num: u64) -> u64 { pub fn factorial(num: u64) -> u64 {
// Complete this function to return the factorial of num (1..=num).into_iter().fold(1, |acc, x| acc * x)
// Do not use:
// - return
// Try not to use:
// - imperative style loops (for, while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
// Execute `rustlings hint iterators4` for hints.
} }
#[cfg(test)] #[cfg(test)]

View File

@ -10,8 +10,6 @@
// //
// Make the code compile and the tests pass. // Make the code compile and the tests pass.
// I AM NOT DONE
use std::collections::HashMap; use std::collections::HashMap;
#[derive(Clone, Copy, PartialEq, Eq)] #[derive(Clone, Copy, PartialEq, Eq)]
@ -34,6 +32,7 @@ fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize { fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// map is a hashmap with String keys and Progress values. // map is a hashmap with String keys and Progress values.
// map = { "variables1": Complete, "from_str": None, ... } // map = { "variables1": Complete, "from_str": None, ... }
map.into_iter().filter(|&(k, v)| v == &value).count()
} }
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize { fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
@ -52,6 +51,9 @@ fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Pr
// collection is a slice of hashmaps. // collection is a slice of hashmaps.
// collection = [{ "variables1": Complete, "from_str": None, ... }, // collection = [{ "variables1": Complete, "from_str": None, ... },
// { "variables2": Complete, ... }, ... ] // { "variables2": Complete, ... }, ... ]
collection
.into_iter()
.fold(0, |acc, x| acc + count_iterator(x, value))
} }
#[cfg(test)] #[cfg(test)]

View File

@ -6,9 +6,7 @@
// of "waiting..." and the program ends without timing out when running, // of "waiting..." and the program ends without timing out when running,
// you've got it :) // you've got it :)
// I AM NOT DONE use std::sync::{Arc, Mutex};
use std::sync::Arc;
use std::thread; use std::thread;
use std::time::Duration; use std::time::Duration;
@ -17,15 +15,16 @@ struct JobStatus {
} }
fn main() { fn main() {
let status = Arc::new(JobStatus { jobs_completed: 0 }); let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));
let status_shared = status.clone(); let status_shared = status.clone();
thread::spawn(move || { thread::spawn(move || {
for _ in 0..10 { for _ in 0..10 {
thread::sleep(Duration::from_millis(250)); thread::sleep(Duration::from_millis(250));
status_shared.jobs_completed += 1; let mut status = status_shared.lock().unwrap();
status.jobs_completed += 1;
} }
}); });
while status.jobs_completed < 10 { while status.lock().unwrap().jobs_completed < 10 {
println!("waiting... "); println!("waiting... ");
thread::sleep(Duration::from_millis(500)); thread::sleep(Duration::from_millis(500));
} }