mirror of
https://github.com/rust-lang/rustlings.git
synced 2025-12-28 06:49:19 +00:00
level 18th
This commit is contained in:
parent
f90ea4c65b
commit
de07320d0c
@ -1,6 +1,6 @@
|
||||
DON'T EDIT THIS FILE!
|
||||
|
||||
generics1
|
||||
box1
|
||||
|
||||
intro1
|
||||
intro2
|
||||
@ -57,4 +57,23 @@ errors2
|
||||
errors3
|
||||
errors4
|
||||
errors5
|
||||
errors6
|
||||
errors6
|
||||
generics1
|
||||
generics2
|
||||
traits1
|
||||
traits2
|
||||
traits3
|
||||
traits4
|
||||
traits5
|
||||
quiz3
|
||||
lifetimes1
|
||||
lifetimes2
|
||||
lifetimes3
|
||||
tests1
|
||||
tests2
|
||||
tests3
|
||||
iterators1
|
||||
iterators2
|
||||
iterators3
|
||||
iterators4
|
||||
iterators5
|
||||
@ -6,6 +6,9 @@ trait AppendBar {
|
||||
|
||||
impl AppendBar for String {
|
||||
// TODO: Implement `AppendBar` for the type `String`.
|
||||
fn append_bar(self) -> Self {
|
||||
self+"Bar"
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
@ -4,6 +4,12 @@ trait AppendBar {
|
||||
|
||||
// TODO: Implement the trait `AppendBar` for a vector of strings.
|
||||
// `append_bar` should push the string "Bar" into the vector.
|
||||
impl AppendBar for Vec<String>{
|
||||
fn append_bar(mut self) -> Self {
|
||||
self.push("Bar".to_string());
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
|
||||
@ -3,7 +3,9 @@ trait Licensed {
|
||||
// implementors like the two structs below can share that default behavior
|
||||
// without repeating the function.
|
||||
// The default license information should be the string "Default license".
|
||||
fn licensing_info(&self) -> String;
|
||||
fn licensing_info(&self) -> String{
|
||||
"Default license".to_string()
|
||||
}
|
||||
}
|
||||
|
||||
struct SomeSoftware {
|
||||
|
||||
@ -11,7 +11,7 @@ impl Licensed for SomeSoftware {}
|
||||
impl Licensed for OtherSoftware {}
|
||||
|
||||
// TODO: Fix the compiler error by only changing the signature of this function.
|
||||
fn compare_license_types(software1: ???, software2: ???) -> bool {
|
||||
fn compare_license_types<T: Licensed, U: Licensed>(software1: T, software2: U) -> bool {
|
||||
software1.licensing_info() == software2.licensing_info()
|
||||
}
|
||||
|
||||
|
||||
@ -19,7 +19,7 @@ impl SomeTrait for OtherStruct {}
|
||||
impl OtherTrait for OtherStruct {}
|
||||
|
||||
// TODO: Fix the compiler error by only changing the signature of this function.
|
||||
fn some_func(item: ???) -> bool {
|
||||
fn some_func<T: SomeTrait + OtherTrait>(item: T) -> bool {
|
||||
item.some_function() && item.other_function()
|
||||
}
|
||||
|
||||
|
||||
@ -4,11 +4,11 @@
|
||||
// not own their own data. What if their owner goes out of scope?
|
||||
|
||||
// TODO: Fix the compiler error by updating the function signature.
|
||||
fn longest(x: &str, y: &str) -> &str {
|
||||
fn longest(x: &str, y: &str) -> String {
|
||||
if x.len() > y.len() {
|
||||
x
|
||||
x.to_string()
|
||||
} else {
|
||||
y
|
||||
y.to_string()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -11,9 +11,10 @@ fn main() {
|
||||
// TODO: Fix the compiler error by moving one line.
|
||||
|
||||
let string1 = String::from("long string is long");
|
||||
let string2 = String::from("xyz");
|
||||
|
||||
let result;
|
||||
{
|
||||
let string2 = String::from("xyz");
|
||||
result = longest(&string1, &string2);
|
||||
}
|
||||
println!("The longest string is '{result}'");
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
// Lifetimes are also needed when structs hold references.
|
||||
|
||||
// TODO: Fix the compiler errors about the struct.
|
||||
struct Book {
|
||||
author: &str,
|
||||
title: &str,
|
||||
struct Book<'a> {
|
||||
author: &'a str,
|
||||
title: &'a str,
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
@ -13,11 +13,11 @@ fn main() {
|
||||
mod tests {
|
||||
// TODO: Import `is_even`. You can use a wildcard to import everything in
|
||||
// the outer module.
|
||||
|
||||
use super::*;
|
||||
#[test]
|
||||
fn you_can_assert() {
|
||||
// TODO: Test the function `is_even` with some values.
|
||||
assert!();
|
||||
assert!();
|
||||
}
|
||||
assert!(is_even(2));
|
||||
assert!(!is_even(3));
|
||||
}
|
||||
}
|
||||
|
||||
@ -15,9 +15,9 @@ mod tests {
|
||||
#[test]
|
||||
fn you_can_assert_eq() {
|
||||
// TODO: Test the function `power_of_2` with some values.
|
||||
assert_eq!();
|
||||
assert_eq!();
|
||||
assert_eq!();
|
||||
assert_eq!();
|
||||
assert_eq!(power_of_2(2),4);
|
||||
assert_eq!(power_of_2(3),8);
|
||||
assert_eq!(power_of_2(4),16);
|
||||
assert_eq!(power_of_2(5),32);
|
||||
}
|
||||
}
|
||||
|
||||
@ -29,20 +29,22 @@ mod tests {
|
||||
// TODO: This test should check if the rectangle has the size that we
|
||||
// pass to its constructor.
|
||||
let rect = Rectangle::new(10, 20);
|
||||
assert_eq!(todo!(), 10); // Check width
|
||||
assert_eq!(todo!(), 20); // Check height
|
||||
assert_eq!(rect.width, 10); // Check width
|
||||
assert_eq!(rect.height, 20); // Check height
|
||||
}
|
||||
|
||||
// TODO: This test should check if the program panics when we try to create
|
||||
// a rectangle with negative width.
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn negative_width() {
|
||||
let _rect = Rectangle::new(-10, 10);
|
||||
}
|
||||
|
||||
// TODO: This test should check if the program panics when we try to create
|
||||
// a rectangle with negative height.
|
||||
#[test]
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn negative_height() {
|
||||
let _rect = Rectangle::new(10, -10);
|
||||
}
|
||||
|
||||
@ -13,13 +13,13 @@ mod tests {
|
||||
let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];
|
||||
|
||||
// TODO: Create an iterator over the array.
|
||||
let mut fav_fruits_iterator = todo!();
|
||||
let mut fav_fruits_iterator =my_fav_fruits.iter();
|
||||
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
|
||||
assert_eq!(fav_fruits_iterator.next(), todo!()); // TODO: Replace `todo!()`
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"custard apple")); // TODO: Replace `todo!()`
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
|
||||
assert_eq!(fav_fruits_iterator.next(), todo!()); // TODO: Replace `todo!()`
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"peach")); // TODO: Replace `todo!()`
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
|
||||
assert_eq!(fav_fruits_iterator.next(), todo!()); // TODO: Replace `todo!()`
|
||||
assert_eq!(fav_fruits_iterator.next(), None); // TODO: Replace `todo!()`
|
||||
}
|
||||
}
|
||||
|
||||
@ -5,24 +5,26 @@
|
||||
// "hello" -> "Hello"
|
||||
fn capitalize_first(input: &str) -> String {
|
||||
let mut chars = input.chars();
|
||||
match chars.next() {
|
||||
let char =match chars.next() {
|
||||
None => String::new(),
|
||||
Some(first) => todo!(),
|
||||
}
|
||||
Some(first) => first.to_uppercase().collect(),
|
||||
};
|
||||
|
||||
char+chars.as_str()
|
||||
}
|
||||
|
||||
// TODO: Apply the `capitalize_first` function to a slice of string slices.
|
||||
// Return a vector of strings.
|
||||
// ["hello", "world"] -> ["Hello", "World"]
|
||||
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
|
||||
// ???
|
||||
words.iter().map(|word| capitalize_first(word)).collect()
|
||||
}
|
||||
|
||||
// TODO: Apply the `capitalize_first` function again to a slice of string
|
||||
// slices. Return a single string.
|
||||
// ["hello", " ", "world"] -> "Hello World"
|
||||
fn capitalize_words_string(words: &[&str]) -> String {
|
||||
// ???
|
||||
words.iter().map(|word| capitalize_first(word)).collect()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
enum DivisionError {
|
||||
// Example: 42 / 0
|
||||
@ -11,21 +12,30 @@ enum DivisionError {
|
||||
// TODO: Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
|
||||
// Otherwise, return a suitable error.
|
||||
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
|
||||
todo!();
|
||||
if b==0 { return Err(DivisionError::DivideByZero) } ;
|
||||
if a == i64::MIN && b == -1 {
|
||||
Err(DivisionError::IntegerOverflow)
|
||||
} else if a % b != 0 {
|
||||
Err(DivisionError::NotDivisible)
|
||||
} else {
|
||||
Ok(a / b)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Add the correct return type and complete the function body.
|
||||
// Desired output: `Ok([1, 11, 1426, 3])`
|
||||
fn result_with_list() {
|
||||
fn result_with_list() -> Result<Vec<i64>,DivisionError>{
|
||||
let numbers = [27, 297, 38502, 81];
|
||||
let division_results = numbers.into_iter().map(|n| divide(n, 27));
|
||||
numbers.into_iter().map(|n| divide(n, 27)).collect()
|
||||
|
||||
}
|
||||
|
||||
// TODO: Add the correct return type and complete the function body.
|
||||
// Desired output: `[Ok(1), Ok(11), Ok(1426), Ok(3)]`
|
||||
fn list_of_results() {
|
||||
fn list_of_results()->Vec<Result<i64,DivisionError>> {
|
||||
let numbers = [27, 297, 38502, 81];
|
||||
let division_results = numbers.into_iter().map(|n| divide(n, 27));
|
||||
division_results.collect()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
@ -10,6 +10,7 @@ fn factorial(num: u64) -> u64 {
|
||||
// - additional variables
|
||||
// For an extra challenge, don't use:
|
||||
// - recursion
|
||||
(1..=num).product()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
@ -28,6 +28,7 @@ fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
|
||||
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
|
||||
// `map` is a hash map with `String` keys and `Progress` values.
|
||||
// map = { "variables1": Complete, "from_str": None, … }
|
||||
map.values().filter(|&v| *v == value).count()
|
||||
}
|
||||
|
||||
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
|
||||
@ -48,6 +49,11 @@ fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Pr
|
||||
// `collection` is a slice of hash maps.
|
||||
// collection = [{ "variables1": Complete, "from_str": None, … },
|
||||
// { "variables2": Complete, … }, … ]
|
||||
collection
|
||||
.iter()
|
||||
.flat_map(|map| map.values())
|
||||
.filter(|&v| *v == value)
|
||||
.count()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
||||
@ -12,14 +12,14 @@
|
||||
// block to support alphabetical report cards in addition to numerical ones.
|
||||
|
||||
// TODO: Adjust the struct as described above.
|
||||
struct ReportCard {
|
||||
grade: f32,
|
||||
struct ReportCard<T> {
|
||||
grade: T,
|
||||
student_name: String,
|
||||
student_age: u8,
|
||||
}
|
||||
|
||||
// TODO: Adjust the impl block as described above.
|
||||
impl ReportCard {
|
||||
impl<T: std::fmt::Display> ReportCard<T> {
|
||||
fn print(&self) -> String {
|
||||
format!(
|
||||
"{} ({}) - achieved a grade of {}",
|
||||
|
||||
@ -1,4 +1,28 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
struct Wrapper<T> {
|
||||
value: T,
|
||||
}
|
||||
|
||||
impl<T> Wrapper<T> {
|
||||
fn new(value: T) -> Self {
|
||||
Wrapper { value }
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn store_u32_in_wrapper() {
|
||||
assert_eq!(Wrapper::new(42).value, 42);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn store_str_in_wrapper() {
|
||||
assert_eq!(Wrapper::new("Foo").value, "Foo");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,32 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// The trait `AppendBar` has only one function which appends "Bar" to any object
|
||||
// implementing this trait.
|
||||
trait AppendBar {
|
||||
fn append_bar(self) -> Self;
|
||||
}
|
||||
|
||||
impl AppendBar for String {
|
||||
fn append_bar(self) -> Self {
|
||||
self + "Bar"
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let s = String::from("Foo");
|
||||
let s = s.append_bar();
|
||||
println!("s: {s}");
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn is_foo_bar() {
|
||||
assert_eq!(String::from("Foo").append_bar(), "FooBar");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn is_bar_bar() {
|
||||
assert_eq!(String::from("").append_bar().append_bar(), "BarBar");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,27 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
trait AppendBar {
|
||||
fn append_bar(self) -> Self;
|
||||
}
|
||||
|
||||
impl AppendBar for Vec<String> {
|
||||
fn append_bar(mut self) -> Self {
|
||||
// ^^^ this is important
|
||||
self.push(String::from("Bar"));
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn is_vec_pop_eq_bar() {
|
||||
let mut foo = vec![String::from("Foo")].append_bar();
|
||||
assert_eq!(foo.pop().unwrap(), "Bar");
|
||||
assert_eq!(foo.pop().unwrap(), "Foo");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,36 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
trait Licensed {
|
||||
fn licensing_info(&self) -> String {
|
||||
"Default license".to_string()
|
||||
}
|
||||
}
|
||||
|
||||
struct SomeSoftware {
|
||||
version_number: i32,
|
||||
}
|
||||
|
||||
struct OtherSoftware {
|
||||
version_number: String,
|
||||
}
|
||||
|
||||
impl Licensed for SomeSoftware {}
|
||||
impl Licensed for OtherSoftware {}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn is_licensing_info_the_same() {
|
||||
let licensing_info = "Default license";
|
||||
let some_software = SomeSoftware { version_number: 1 };
|
||||
let other_software = OtherSoftware {
|
||||
version_number: "v2.0.0".to_string(),
|
||||
};
|
||||
assert_eq!(some_software.licensing_info(), licensing_info);
|
||||
assert_eq!(other_software.licensing_info(), licensing_info);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,35 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
trait Licensed {
|
||||
fn licensing_info(&self) -> String {
|
||||
"Default license".to_string()
|
||||
}
|
||||
}
|
||||
|
||||
struct SomeSoftware;
|
||||
struct OtherSoftware;
|
||||
|
||||
impl Licensed for SomeSoftware {}
|
||||
impl Licensed for OtherSoftware {}
|
||||
|
||||
fn compare_license_types(software1: impl Licensed, software2: impl Licensed) -> bool {
|
||||
// ^^^^^^^^^^^^^ ^^^^^^^^^^^^^
|
||||
software1.licensing_info() == software2.licensing_info()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn compare_license_information() {
|
||||
assert!(compare_license_types(SomeSoftware, OtherSoftware));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn compare_license_information_backwards() {
|
||||
assert!(compare_license_types(OtherSoftware, SomeSoftware));
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,39 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
trait SomeTrait {
|
||||
fn some_function(&self) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
trait OtherTrait {
|
||||
fn other_function(&self) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
struct SomeStruct;
|
||||
impl SomeTrait for SomeStruct {}
|
||||
impl OtherTrait for SomeStruct {}
|
||||
|
||||
struct OtherStruct;
|
||||
impl SomeTrait for OtherStruct {}
|
||||
impl OtherTrait for OtherStruct {}
|
||||
|
||||
fn some_func(item: impl SomeTrait + OtherTrait) -> bool {
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
item.some_function() && item.other_function()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_some_func() {
|
||||
assert!(some_func(SomeStruct));
|
||||
assert!(some_func(OtherStruct));
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,28 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// The Rust compiler needs to know how to check whether supplied references are
|
||||
// valid, so that it can let the programmer know if a reference is at risk of
|
||||
// going out of scope before it is used. Remember, references are borrows and do
|
||||
// not own their own data. What if their owner goes out of scope?
|
||||
|
||||
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
|
||||
// ^^^^ ^^ ^^ ^^
|
||||
if x.len() > y.len() {
|
||||
x
|
||||
} else {
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_longest() {
|
||||
assert_eq!(longest("abcd", "123"), "abcd");
|
||||
assert_eq!(longest("abc", "1234"), "1234");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,33 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
|
||||
if x.len() > y.len() {
|
||||
x
|
||||
} else {
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let string1 = String::from("long string is long");
|
||||
// Solution1: You can move `strings2` out of the inner block so that it is
|
||||
// not dropped before the print statement.
|
||||
let string2 = String::from("xyz");
|
||||
let result;
|
||||
{
|
||||
result = longest(&string1, &string2);
|
||||
}
|
||||
println!("The longest string is '{result}'");
|
||||
// `string2` dropped at the end of the function.
|
||||
|
||||
// =========================================================================
|
||||
|
||||
let string1 = String::from("long string is long");
|
||||
let result;
|
||||
{
|
||||
let string2 = String::from("xyz");
|
||||
result = longest(&string1, &string2);
|
||||
// Solution2: You can move the print statement into the inner block so
|
||||
// that it is executed before `string2` is dropped.
|
||||
println!("The longest string is '{result}'");
|
||||
// `string2` dropped here (end of the inner scope).
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,18 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// Lifetimes are also needed when structs hold references.
|
||||
|
||||
struct Book<'a> {
|
||||
// ^^^^ added a lifetime annotation
|
||||
author: &'a str,
|
||||
// ^^
|
||||
title: &'a str,
|
||||
// ^^
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let book = Book {
|
||||
author: "George Orwell",
|
||||
title: "1984",
|
||||
};
|
||||
|
||||
println!("{} by {}", book.title, book.author);
|
||||
}
|
||||
|
||||
@ -1,4 +1,24 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// Tests are important to ensure that your code does what you think it should
|
||||
// do.
|
||||
|
||||
fn is_even(n: i64) -> bool {
|
||||
n % 2 == 0
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
// When writing unit tests, it is common to import everything from the outer
|
||||
// module (`super`) using a wildcard.
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn you_can_assert() {
|
||||
assert!(is_even(0));
|
||||
assert!(!is_even(-1));
|
||||
// ^ You can assert `false` using the negation operator `!`.
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,22 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// Calculates the power of 2 using a bit shift.
|
||||
// `1 << n` is equivalent to "2 to the power of n".
|
||||
fn power_of_2(n: u8) -> u64 {
|
||||
1 << n
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn you_can_assert_eq() {
|
||||
assert_eq!(power_of_2(0), 1);
|
||||
assert_eq!(power_of_2(1), 2);
|
||||
assert_eq!(power_of_2(2), 4);
|
||||
assert_eq!(power_of_2(3), 8);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,45 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
struct Rectangle {
|
||||
width: i32,
|
||||
height: i32,
|
||||
}
|
||||
|
||||
impl Rectangle {
|
||||
// Don't change this function.
|
||||
fn new(width: i32, height: i32) -> Self {
|
||||
if width <= 0 || height <= 0 {
|
||||
// Returning a `Result` would be better here. But we want to learn
|
||||
// how to test functions that can panic.
|
||||
panic!("Rectangle width and height must be positive");
|
||||
}
|
||||
|
||||
Rectangle { width, height }
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn correct_width_and_height() {
|
||||
let rect = Rectangle::new(10, 20);
|
||||
assert_eq!(rect.width, 10); // Check width
|
||||
assert_eq!(rect.height, 20); // Check height
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic] // Added this attribute to check that the test panics.
|
||||
fn negative_width() {
|
||||
let _rect = Rectangle::new(-10, 10);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic] // Added this attribute to check that the test panics.
|
||||
fn negative_height() {
|
||||
let _rect = Rectangle::new(10, -10);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,26 @@
|
||||
// When performing operations on elements within a collection, iterators are
|
||||
// essential. This module helps you get familiar with the structure of using an
|
||||
// iterator and how to go through elements within an iterable collection.
|
||||
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
#[test]
|
||||
fn iterators() {
|
||||
let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];
|
||||
|
||||
// Create an iterator over the array.
|
||||
let mut fav_fruits_iterator = my_fav_fruits.iter();
|
||||
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"custard apple"));
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"peach"));
|
||||
assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
|
||||
assert_eq!(fav_fruits_iterator.next(), None);
|
||||
// ^^^^ reached the end
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,56 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// In this exercise, you'll learn some of the unique advantages that iterators
|
||||
// can offer.
|
||||
|
||||
// "hello" -> "Hello"
|
||||
fn capitalize_first(input: &str) -> String {
|
||||
let mut chars = input.chars();
|
||||
match chars.next() {
|
||||
None => String::new(),
|
||||
Some(first) => first.to_uppercase().to_string() + chars.as_str(),
|
||||
}
|
||||
}
|
||||
|
||||
// Apply the `capitalize_first` function to a slice of string slices.
|
||||
// Return a vector of strings.
|
||||
// ["hello", "world"] -> ["Hello", "World"]
|
||||
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
|
||||
words.iter().map(|word| capitalize_first(word)).collect()
|
||||
}
|
||||
|
||||
// Apply the `capitalize_first` function again to a slice of string
|
||||
// slices. Return a single string.
|
||||
// ["hello", " ", "world"] -> "Hello World"
|
||||
fn capitalize_words_string(words: &[&str]) -> String {
|
||||
words.iter().map(|word| capitalize_first(word)).collect()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_success() {
|
||||
assert_eq!(capitalize_first("hello"), "Hello");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty() {
|
||||
assert_eq!(capitalize_first(""), "");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_iterate_string_vec() {
|
||||
let words = vec!["hello", "world"];
|
||||
assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_iterate_into_string() {
|
||||
let words = vec!["hello", " ", "world"];
|
||||
assert_eq!(capitalize_words_string(&words), "Hello World");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,86 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
enum DivisionError {
|
||||
// Example: 42 / 0
|
||||
DivideByZero,
|
||||
// Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
|
||||
IntegerOverflow,
|
||||
// Example: 5 / 2 = 2.5
|
||||
NotDivisible,
|
||||
}
|
||||
|
||||
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
|
||||
if b == 0 {
|
||||
return Err(DivisionError::DivideByZero);
|
||||
}
|
||||
|
||||
if a == i64::MIN && b == -1 {
|
||||
return Err(DivisionError::IntegerOverflow);
|
||||
}
|
||||
|
||||
if a % b != 0 {
|
||||
return Err(DivisionError::NotDivisible);
|
||||
}
|
||||
|
||||
Ok(a / b)
|
||||
}
|
||||
|
||||
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
let numbers = [27, 297, 38502, 81];
|
||||
let division_results = numbers.into_iter().map(|n| divide(n, 27));
|
||||
// Collects to the expected return type. Returns the first error in the
|
||||
// division results (if one exists).
|
||||
division_results.collect()
|
||||
}
|
||||
|
||||
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
let numbers = [27, 297, 38502, 81];
|
||||
let division_results = numbers.into_iter().map(|n| divide(n, 27));
|
||||
// Collects to the expected return type.
|
||||
division_results.collect()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_success() {
|
||||
assert_eq!(divide(81, 9), Ok(9));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divide_by_0() {
|
||||
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_integer_overflow() {
|
||||
assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_not_divisible() {
|
||||
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_divide_0_by_something() {
|
||||
assert_eq!(divide(0, 81), Ok(0));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_result_with_list() {
|
||||
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_list_of_results() {
|
||||
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,72 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// 3 possible solutions are presented.
|
||||
|
||||
// With `for` loop and a mutable variable.
|
||||
fn factorial_for(num: u64) -> u64 {
|
||||
let mut result = 1;
|
||||
|
||||
for x in 2..=num {
|
||||
result *= x;
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
// Equivalent to `factorial_for` but shorter and without a `for` loop and
|
||||
// mutable variables.
|
||||
fn factorial_fold(num: u64) -> u64 {
|
||||
// Case num==0: The iterator 2..=0 is empty
|
||||
// -> The initial value of `fold` is returned which is 1.
|
||||
// Case num==1: The iterator 2..=1 is also empty
|
||||
// -> The initial value 1 is returned.
|
||||
// Case num==2: The iterator 2..=2 contains one element
|
||||
// -> The initial value 1 is multiplied by 2 and the result
|
||||
// is returned.
|
||||
// Case num==3: The iterator 2..=3 contains 2 elements
|
||||
// -> 1 * 2 is calculated, then the result 2 is multiplied by
|
||||
// the second element 3 so the result 6 is returned.
|
||||
// And so on…
|
||||
#[allow(clippy::unnecessary_fold)]
|
||||
(2..=num).fold(1, |acc, x| acc * x)
|
||||
}
|
||||
|
||||
// Equivalent to `factorial_fold` but with a built-in method that is suggested
|
||||
// by Clippy.
|
||||
fn factorial_product(num: u64) -> u64 {
|
||||
(2..=num).product()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn factorial_of_0() {
|
||||
assert_eq!(factorial_for(0), 1);
|
||||
assert_eq!(factorial_fold(0), 1);
|
||||
assert_eq!(factorial_product(0), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn factorial_of_1() {
|
||||
assert_eq!(factorial_for(1), 1);
|
||||
assert_eq!(factorial_fold(1), 1);
|
||||
assert_eq!(factorial_product(1), 1);
|
||||
}
|
||||
#[test]
|
||||
fn factorial_of_2() {
|
||||
assert_eq!(factorial_for(2), 2);
|
||||
assert_eq!(factorial_fold(2), 2);
|
||||
assert_eq!(factorial_product(2), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn factorial_of_4() {
|
||||
assert_eq!(factorial_for(4), 24);
|
||||
assert_eq!(factorial_fold(4), 24);
|
||||
assert_eq!(factorial_product(4), 24);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,168 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// Let's define a simple model to track Rustlings' exercise progress. Progress
|
||||
// will be modelled using a hash map. The name of the exercise is the key and
|
||||
// the progress is the value. Two counting functions were created to count the
|
||||
// number of exercises with a given progress. Recreate this counting
|
||||
// functionality using iterators. Try to not use imperative loops (for/while).
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq)]
|
||||
enum Progress {
|
||||
None,
|
||||
Some,
|
||||
Complete,
|
||||
}
|
||||
|
||||
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
|
||||
let mut count = 0;
|
||||
for val in map.values() {
|
||||
if *val == value {
|
||||
count += 1;
|
||||
}
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
|
||||
// `map` is a hash map with `String` keys and `Progress` values.
|
||||
// map = { "variables1": Complete, "from_str": None, … }
|
||||
map.values().filter(|val| **val == value).count()
|
||||
}
|
||||
|
||||
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
|
||||
let mut count = 0;
|
||||
for map in collection {
|
||||
count += count_for(map, value);
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
|
||||
// `collection` is a slice of hash maps.
|
||||
// collection = [{ "variables1": Complete, "from_str": None, … },
|
||||
// { "variables2": Complete, … }, … ]
|
||||
collection
|
||||
.iter()
|
||||
.map(|map| count_iterator(map, value))
|
||||
.sum()
|
||||
}
|
||||
|
||||
// Equivalent to `count_collection_iterator` and `count_iterator`, iterating as
|
||||
// if the collection was a single container instead of a container of containers
|
||||
// (and more accurately, a single iterator instead of an iterator of iterators).
|
||||
fn count_collection_iterator_flat(
|
||||
collection: &[HashMap<String, Progress>],
|
||||
value: Progress,
|
||||
) -> usize {
|
||||
// `collection` is a slice of hash maps.
|
||||
// collection = [{ "variables1": Complete, "from_str": None, … },
|
||||
// { "variables2": Complete, … }, … ]
|
||||
collection
|
||||
.iter()
|
||||
.flat_map(HashMap::values) // or just `.flatten()` when wanting the default iterator (`HashMap::iter`)
|
||||
.filter(|val| **val == value)
|
||||
.count()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use Progress::*;
|
||||
|
||||
fn get_map() -> HashMap<String, Progress> {
|
||||
let mut map = HashMap::new();
|
||||
map.insert(String::from("variables1"), Complete);
|
||||
map.insert(String::from("functions1"), Complete);
|
||||
map.insert(String::from("hashmap1"), Complete);
|
||||
map.insert(String::from("arc1"), Some);
|
||||
map.insert(String::from("as_ref_mut"), None);
|
||||
map.insert(String::from("from_str"), None);
|
||||
|
||||
map
|
||||
}
|
||||
|
||||
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
|
||||
let map = get_map();
|
||||
|
||||
let mut other = HashMap::new();
|
||||
other.insert(String::from("variables2"), Complete);
|
||||
other.insert(String::from("functions2"), Complete);
|
||||
other.insert(String::from("if1"), Complete);
|
||||
other.insert(String::from("from_into"), None);
|
||||
other.insert(String::from("try_from_into"), None);
|
||||
|
||||
vec![map, other]
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_complete() {
|
||||
let map = get_map();
|
||||
assert_eq!(count_iterator(&map, Complete), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_some() {
|
||||
let map = get_map();
|
||||
assert_eq!(count_iterator(&map, Some), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_none() {
|
||||
let map = get_map();
|
||||
assert_eq!(count_iterator(&map, None), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_complete_equals_for() {
|
||||
let map = get_map();
|
||||
let progress_states = [Complete, Some, None];
|
||||
for progress_state in progress_states {
|
||||
assert_eq!(
|
||||
count_for(&map, progress_state),
|
||||
count_iterator(&map, progress_state),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_complete() {
|
||||
let collection = get_vec_map();
|
||||
assert_eq!(count_collection_iterator(&collection, Complete), 6);
|
||||
assert_eq!(count_collection_iterator_flat(&collection, Complete), 6);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_some() {
|
||||
let collection = get_vec_map();
|
||||
assert_eq!(count_collection_iterator(&collection, Some), 1);
|
||||
assert_eq!(count_collection_iterator_flat(&collection, Some), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_none() {
|
||||
let collection = get_vec_map();
|
||||
assert_eq!(count_collection_iterator(&collection, None), 4);
|
||||
assert_eq!(count_collection_iterator_flat(&collection, None), 4);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn count_collection_equals_for() {
|
||||
let collection = get_vec_map();
|
||||
let progress_states = [Complete, Some, None];
|
||||
|
||||
for progress_state in progress_states {
|
||||
assert_eq!(
|
||||
count_collection_for(&collection, progress_state),
|
||||
count_collection_iterator(&collection, progress_state),
|
||||
);
|
||||
assert_eq!(
|
||||
count_collection_for(&collection, progress_state),
|
||||
count_collection_iterator_flat(&collection, progress_state),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +1,65 @@
|
||||
fn main() {
|
||||
// DON'T EDIT THIS SOLUTION FILE!
|
||||
// It will be automatically filled after you finish the exercise.
|
||||
// An imaginary magical school has a new report card generation system written
|
||||
// in Rust! Currently, the system only supports creating report cards where the
|
||||
// student's grade is represented numerically (e.g. 1.0 -> 5.5). However, the
|
||||
// school also issues alphabetical grades (A+ -> F-) and needs to be able to
|
||||
// print both types of report card!
|
||||
//
|
||||
// Make the necessary code changes in the struct `ReportCard` and the impl
|
||||
// block to support alphabetical report cards in addition to numerical ones.
|
||||
|
||||
use std::fmt::Display;
|
||||
|
||||
// Make the struct generic over `T`.
|
||||
struct ReportCard<T> {
|
||||
// ^^^
|
||||
grade: T,
|
||||
// ^
|
||||
student_name: String,
|
||||
student_age: u8,
|
||||
}
|
||||
|
||||
// To be able to print the grade, it has to implement the `Display` trait.
|
||||
impl<T: Display> ReportCard<T> {
|
||||
// ^^^^^^^ require that `T` implements `Display`.
|
||||
fn print(&self) -> String {
|
||||
format!(
|
||||
"{} ({}) - achieved a grade of {}",
|
||||
&self.student_name, &self.student_age, &self.grade,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn generate_numeric_report_card() {
|
||||
let report_card = ReportCard {
|
||||
grade: 2.1,
|
||||
student_name: "Tom Wriggle".to_string(),
|
||||
student_age: 12,
|
||||
};
|
||||
assert_eq!(
|
||||
report_card.print(),
|
||||
"Tom Wriggle (12) - achieved a grade of 2.1",
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn generate_alphabetic_report_card() {
|
||||
let report_card = ReportCard {
|
||||
grade: "A+",
|
||||
student_name: "Gary Plotter".to_string(),
|
||||
student_age: 11,
|
||||
};
|
||||
assert_eq!(
|
||||
report_card.print(),
|
||||
"Gary Plotter (11) - achieved a grade of A+",
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user