update crapto1 and fix compiling warnings

Crapto1 library from proxmark3 repo
This commit is contained in:
Valentín Kivachuk 2018-11-22 21:18:54 +01:00
parent ba072f16f6
commit 0723f53aaf
8 changed files with 751 additions and 624 deletions

View File

@ -35,7 +35,7 @@ AC_FUNC_REALLOC
AC_CHECK_FUNCS([memset]) AC_CHECK_FUNCS([memset])
# C99 # C99
CFLAGS="$CFLAGS -std=c99" CFLAGS="$CFLAGS -std=c99 -O3 -Wall"
AC_CONFIG_FILES([Makefile AC_CONFIG_FILES([Makefile
src/Makefile]) src/Makefile])

View File

@ -2,9 +2,9 @@ AM_CFLAGS = @libnfc_CFLAGS@
bin_PROGRAMS = mfoc bin_PROGRAMS = mfoc
noinst_HEADERS = crapto1.h mfoc.h mifare.h nfc-utils.h noinst_HEADERS = crapto1.h mfoc.h mifare.h nfc-utils.h parity.h
mfoc_SOURCES = crapto1.c crypto1.c mfoc.c mifare.c nfc-utils.c mfoc_SOURCES = crapto1.c crypto1.c mfoc.c mifare.c nfc-utils.c parity.c
mfoc_LDADD = @libnfc_LIBS@ mfoc_LDADD = @libnfc_LIBS@
dist_man_MANS = mfoc.1 dist_man_MANS = mfoc.1

View File

@ -1,379 +1,426 @@
/* crapto1.c /* crapto1.c
This program is free software; you can redistribute it and/or This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version. of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$ Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com> Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/ */
#include "crapto1.h" #include "crapto1.h"
#include <stdlib.h> #include <stdlib.h>
#include "parity.h"
#if !defined LOWMEM && defined __GNUC__ #if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20]; static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut(void)
{ static void __attribute__((constructor)) fill_lut() {
uint32_t i; uint32_t i;
for (i = 0; i < 1 << 20; ++i) for (i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i); filterlut[i] = filter(i);
} }
#define filter(x) (filterlut[(x) & 0xfffff]) #define filter(x) (filterlut[(x) & 0xfffff])
#endif #endif
static void quicksort(uint32_t *const start, uint32_t *const stop) typedef struct bucket {
{ uint32_t *head;
uint32_t *it = start + 1, *rit = stop; uint32_t *bp;
} bucket_t;
if (it > rit) typedef bucket_t bucket_array_t[2][0x100];
return;
while (it < rit) typedef struct bucket_info {
if (*it <= *start)
++it;
else if (*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if (*rit >= *start) struct {
--rit; uint32_t *head, *tail;
if (rit != start) } bucket_info[2][0x100];
*rit ^= (*rit ^= *start, *start ^= *rit); uint32_t numbuckets;
} bucket_info_t;
quicksort(start, rit - 1); static void bucket_sort_intersect(uint32_t * const estart, uint32_t * const estop,
quicksort(rit + 1, stop); uint32_t * const ostart, uint32_t * const ostop,
bucket_info_t *bucket_info, bucket_array_t bucket) {
uint32_t *p1, *p2;
uint32_t * start[2];
uint32_t * stop[2];
start[0] = estart;
stop[0] = estop;
start[1] = ostart;
stop[1] = ostop;
// init buckets to be empty
for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0x00; j <= 0xff; j++) {
bucket[i][j].bp = bucket[i][j].head;
}
}
// sort the lists into the buckets based on the MSB (contribution bits)
for (uint32_t i = 0; i < 2; i++) {
for (p1 = start[i]; p1 <= stop[i]; p1++) {
uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
*(bucket[i][bucket_index].bp++) = *p1;
}
}
// write back intersecting buckets as sorted list.
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
uint32_t nonempty_bucket;
for (uint32_t i = 0; i < 2; i++) {
p1 = start[i];
nonempty_bucket = 0;
for (uint32_t j = 0x00; j <= 0xff; j++) {
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
bucket_info->bucket_info[i][nonempty_bucket].head = p1;
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
nonempty_bucket++;
}
}
bucket_info->numbuckets = nonempty_bucket;
}
} }
/** binsearch /** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop] * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/ */
static inline uint32_t * /* static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
binsearch(uint32_t *start, uint32_t *stop)
{ {
uint32_t mid, val = *stop & 0xff000000; uint32_t mid, val = *stop & 0xff000000;
while (start != stop) while(start != stop)
if (start[mid = (stop - start) >> 1] > val) if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid]; stop = &start[mid];
else else
start += mid + 1; start += mid + 1;
return start; return start;
} }
*/
/** update_contribution /** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB * helper, calculates the partial linear feedback contributions and puts in MSB
*/ */
static inline void static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) {
{ uint32_t p = *item >> 25;
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1); p = p << 1 | evenparity32(*item & mask1);
p = p << 1 | parity(*item & mask2); p = p << 1 | evenparity32(*item & mask2);
*item = p << 24 | (*item & 0xffffff); *item = p << 24 | (*item & 0xffffff);
} }
/** extend_table /** extend_table
* using a bit of the keystream extend the table of possible lfsr states * using a bit of the keystream extend the table of possible lfsr states
*/ */
static inline void static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) {
{ in <<= 24;
in <<= 24; for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1) if (filter(*tbl) ^ filter(*tbl | 1)) {
if (filter(*tbl) ^ filter(*tbl | 1)) { *tbl |= filter(*tbl) ^ bit;
*tbl |= filter(*tbl) ^ bit; update_contribution(tbl, m1, m2);
update_contribution(tbl, m1, m2); *tbl ^= in;
*tbl ^= in; } else if (filter(*tbl) == bit) {
} else if (filter(*tbl) == bit) { *++*end = tbl[1];
*++*end = tbl[1]; tbl[1] = tbl[0] | 1;
tbl[1] = tbl[0] | 1; update_contribution(tbl, m1, m2);
update_contribution(tbl, m1, m2); *tbl++ ^= in;
*tbl++ ^= in; update_contribution(tbl, m1, m2);
update_contribution(tbl, m1, m2); *tbl ^= in;
*tbl ^= in; } else
} else *tbl-- = *(*end)--;
*tbl-- = *(*end)--;
} }
/** extend_table_simple /** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states * using a bit of the keystream extend the table of possible lfsr states
*/ */
static inline void static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) {
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
{ if (filter(*tbl) ^ filter(*tbl | 1))
for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1) *tbl |= filter(*tbl) ^ bit;
if (filter(*tbl) ^ filter(*tbl | 1)) { else if (filter(*tbl) == bit) {
*tbl |= filter(*tbl) ^ bit; *++*end = *++tbl;
} else if (filter(*tbl) == bit) { *tbl = tbl[-1] | 1;
*++*end = *++tbl;
*tbl = tbl[-1] | 1; } else
} else *tbl-- = *(*end)--;
*tbl-- = *(*end)--;
} }
/** recover /** recover
* recursively narrow down the search space, 4 bits of keystream at a time * recursively narrow down the search space, 4 bits of keystream at a time
*/ */
static struct Crypto1State * static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in) { struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) {
uint32_t *o, *e, i; uint32_t *o, *e, i;
bucket_info_t bucket_info;
if (rem == -1) { if (rem == -1) {
for (e = e_head; e <= e_tail; ++e) { for (e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); *e = *e << 1 ^ evenparity32(*e & LF_POLY_EVEN) ^ !!(in & 4);
for (o = o_head; o <= o_tail; ++o, ++sl) { for (o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o; sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD); sl->odd = *e ^ evenparity32(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0; sl[1].odd = sl[1].even = 0;
} }
}
return sl;
} }
for (i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if (o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if (e_head > e_tail)
return sl;
}
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
rem, sl, in, bucket);
}
return sl; return sl;
}
for (i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if (o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if (e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while (o_tail >= o_head && e_tail >= e_head)
if (((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
} else if (*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
} }
/** lfsr_recovery /** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream * recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value * additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated * that was fed into the lfsr at the time the keystream was generated
*/ */
struct Crypto1State *lfsr_recovery32(uint32_t ks2, uint32_t in) { struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) {
struct Crypto1State *statelist; struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0; uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i; int i;
for (i = 31; i >= 0; i -= 2) for (i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i); oks = oks << 1 | BEBIT(ks2, i);
for (i = 30; i >= 0; i -= 2) for (i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i); eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); odd_head = odd_tail = malloc(sizeof (uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21); even_head = even_tail = malloc(sizeof (uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18); statelist = malloc(sizeof (struct Crypto1State) << 18);
if (!odd_tail-- || !even_tail-- || !statelist) if (!odd_tail-- || !even_tail-- || !statelist) {
goto out; free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
statelist->odd = statelist->even = 0; // allocate memory for out of place bucket_sort
bucket_array_t bucket;
for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++) {
bucket[i][j].head = malloc(sizeof (uint32_t) << 14);
if (!bucket[i][j].head) {
goto out;
}
}
for (i = 1 << 20; i >= 0; --i) {
if (filter(i) == (oks & 1))
*++odd_tail = i;
if (filter(i) == (eks & 1))
*++even_tail = i;
}
for (i = 0; i < 4; i++) { for (i = 1 << 20; i >= 0; --i) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); if (filter(i) == (oks & 1))
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); *++odd_tail = i;
} if (filter(i) == (eks & 1))
*++even_tail = i;
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); for (i = 0; i < 4; i++) {
recover(odd_head, odd_tail, oks, extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
even_head, even_tail, eks, 11, statelist, in << 1); extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1, bucket);
out: out:
free(odd_head); free(odd_head);
free(even_head); free(even_head);
return statelist; for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++)
free(bucket[i][j].head);
return statelist;
} }
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, static const uint32_t S1[] = {0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
}; static const uint32_t S2[] = {0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, 0x7EC7EE90, 0x7F63F748, 0x79117020};
0x7EC7EE90, 0x7F63F748, 0x79117020
};
static const uint32_t T1[] = { static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C
}; };
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, static const uint32_t T2[] = {0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
}; static const uint32_t C1[] = {0x846B5, 0x4235A, 0x211AD};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD}; static const uint32_t C2[] = {0x1A822E0, 0x21A822E0, 0x21A822E0};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states /** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version * Variation mentioned in the paper. Somewhat optimized version
*/ */
struct Crypto1State *lfsr_recovery64(uint32_t ks2, uint32_t ks3) { struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) {
struct Crypto1State *statelist, *sl; struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32]; uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0; uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16]; uint32_t *tail, table[1 << 16];
int i, j; int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4); sl = statelist = malloc(sizeof (struct Crypto1State) << 4);
if (!sl) if (!sl)
return 0; return 0;
sl->odd = sl->even = 0; sl->odd = sl->even = 0;
for (i = 30; i >= 0; i -= 2) { for (i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24); oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24); oks[16 + (i >> 1)] = BEBIT(ks3, i);
} }
for (i = 31; i >= 0; i -= 2) { for (i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24); eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24); eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for (i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for (j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if (tail < table)
continue;
for (j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for (j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for (; tail >= table; --tail) {
for (j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^(*tail & C2[j]));
if (filter(*tail) != oks[29 + j])
goto continue2;
}
for (j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for (j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if (filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:
;
} }
}
return statelist;
}
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb); for (i = 0xfffff; i >= 0; --i) {
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb); if (filter(i) != oks[0])
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd); continue;
*(tail = table) = i;
for (j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if (tail < table)
continue;
for (j = 0; j < 19; ++j)
low = low << 1 | evenparity32(i & S1[j]);
for (j = 0; j < 32; ++j)
hi[j] = evenparity32(i & T1[j]);
for (; tail >= table; --tail) {
for (j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= evenparity32((i & C1[j]) ^ (*tail & C2[j]));
if (filter(*tail) != oks[29 + j])
goto continue2;
}
for (j = 0; j < 19; ++j)
win = win << 1 | evenparity32(*tail & S2[j]);
win ^= low;
for (j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ evenparity32(*tail & T2[j]);
if (filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | evenparity32(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ evenparity32(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:
;
}
}
return statelist;
}
/** lfsr_rollback_bit /** lfsr_rollback_bit
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) {
{ int out;
int out; uint8_t ret;
uint8_t ret; uint32_t t;
s->odd &= 0xffffff; s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd); t = s->odd, s->odd = s->even, s->even = t;
out = s->even & 1; out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1); out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd; out ^= LF_POLY_ODD & s->odd;
out ^= !!in; out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb; out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23; s->even |= evenparity32(out) << 23;
return ret; return ret;
} }
/** lfsr_rollback_byte /** lfsr_rollback_byte
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) {
{ int i, ret = 0;
int i; for (i = 7; i >= 0; --i)
uint8_t ret = 0; ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
for (i = 7; i >= 0; --i) return ret;
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
} }
/** lfsr_rollback_word /** lfsr_rollback_word
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) {
{ int i;
int i; uint32_t ret = 0;
uint32_t ret = 0; for (i = 31; i >= 0; --i)
for (i = 31; i >= 0; --i) ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); return ret;
return ret;
} }
/** nonce_distance /** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/ */
static uint16_t *dist = 0; static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{ int nonce_distance(uint32_t from, uint32_t to) {
uint16_t x, i; uint16_t x, i;
if (!dist) { if (!dist) {
dist = malloc(2 << 16); dist = malloc(2 << 16);
if (!dist) if (!dist)
return -1; return -1;
for (x = i = 1; i; ++i) { for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i; dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
} }
} return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
} }
bool validate_prng_nonce(uint32_t nonce) bool validate_prng_nonce(uint32_t nonce)
{ {
// init prng table: // init prng table:
@ -381,119 +428,106 @@ bool validate_prng_nonce(uint32_t nonce)
return ((65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535) == 16; return ((65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535) == 16;
} }
static uint32_t fastfwd[2][8] = { static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980} { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}
}; };
/** lfsr_prefix_ks /** lfsr_prefix_ks
* *
* Is an exported helper function from the common prefix attack * Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array * Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state. * of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to * The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr * encrypt the NACK which is observed when varying only the 3 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/ */
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) {
{ uint32_t c, entry, *candidates = malloc(4 << 10);
uint32_t c, entry, *candidates = malloc(4 << 21); int i, size = 0, good;
int i, size = (1 << 21) - 1;
if (!candidates) if (!candidates)
return 0; return 0;
for (i = 0; i <= size; ++i) for (i = 0; i < 1 << 21; ++i) {
candidates[i] = i; for (c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
for (c = 0; c < 8; ++c) good &= (BIT(ks[c], isodd) == filter(entry >> 1));
for (i = 0; i <= size; ++i) { good &= (BIT(ks[c], isodd + 2) == filter(entry));
entry = candidates[i] ^ fastfwd[isodd][c]; }
if (good)
if (filter(entry >> 1) != BIT(ks[c], isodd) || candidates[size++] = i;
filter(entry) != BIT(ks[c], isodd + 2))
candidates[i--] = candidates[size--];
} }
candidates[size + 1] = -1; candidates[size] = -1;
return candidates; return candidates;
} }
/** check_pfx_parity /** check_pfx_parity
* helper function which eliminates possible secret states using parity bits * helper function which eliminates possible secret states using parity bits
*/ */
static struct Crypto1State * static struct Crypto1State*
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State *sl) { uint32_t odd, uint32_t even, struct Crypto1State* sl, uint32_t no_par) {
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for (c = 0; good && c < 8; ++c) { for (c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c]; sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c]; sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0); lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0); lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0); ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0); ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^(prefix | c << 5); if (no_par)
rr = ks2 ^ rresp; break;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); nr = ks1 ^ (prefix | c << 5);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); rr = ks2 ^ rresp;
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good; good &= evenparity32(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= evenparity32(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= evenparity32(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= evenparity32(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= evenparity32(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
} }
struct Crypto1State *lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
/** lfsr_common_prefix /** lfsr_common_prefix
* Implentation of the common prefix attack. * Implentation of the common prefix attack.
* Requires the 29 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/ */
struct Crypto1State * struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) { lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint32_t no_par) {
struct Crypto1State *statelist, *s; struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top; uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1); odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0); even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20); s = statelist = malloc((sizeof *statelist) << 22); // was << 20. Need more for no_par special attack. Enough???
if (!s || !odd || !even) { if (!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
for (o = odd; *o + 1; ++o)
for (e = even; *e + 1; ++e)
for (top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s, no_par);
}
s->odd = s->even = 0;
out:
free(odd); free(odd);
free(even); free(even);
free(statelist); return statelist;
return 0;
}
for (o = odd; *o + 1; ++o)
for (e = even; *e + 1; ++e)
for (top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
free(odd);
free(even);
return statelist;
} }

View File

@ -15,8 +15,8 @@
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$ MA 02110-1301, US$
Copyright (C) 2008-2009 bla <blapost@gmail.com> Copyright (C) 2008-2014 bla <blapost@gmail.com>
*/ */
#ifndef CRAPTO1_INCLUDED #ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED #define CRAPTO1_INCLUDED
#include <stdint.h> #include <stdint.h>
@ -25,66 +25,59 @@
extern "C" { extern "C" {
#endif #endif
struct Crypto1State {uint32_t odd, even;}; struct Crypto1State {
struct Crypto1State *crypto1_create(uint64_t); uint32_t odd, even;
void crypto1_destroy(struct Crypto1State *); };
void crypto1_get_lfsr(struct Crypto1State *, uint64_t *); #if defined(__arm__) && !defined(__linux__) && !defined(_WIN32) && !defined(__APPLE__) // bare metal ARM Proxmark lacks malloc()/free()
uint8_t crypto1_bit(struct Crypto1State *, uint8_t, int); void crypto1_create(struct Crypto1State *s, uint64_t key);
uint8_t crypto1_byte(struct Crypto1State *, uint8_t, int); #else
uint32_t crypto1_word(struct Crypto1State *, uint32_t, int); struct Crypto1State *crypto1_create(uint64_t key);
uint32_t prng_successor(uint32_t x, uint32_t n); #endif
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State *lfsr_recovery32(uint32_t ks2, uint32_t in); struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State *lfsr_recovery64(uint32_t ks2, uint32_t ks3); struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint32_t no_par);
void lfsr_rollback(struct Crypto1State *s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb); uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to); uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
bool validate_prng_nonce(uint32_t nonce); uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
bool validate_prng_nonce(uint32_t nonce);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\ #define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\ uint32_t __n = 0,__M = 0, N = 0;\
int __i;\ int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\ for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ if(BIT(FILTER, __i) ^ evenparity32(__M & 0xFF01))\
break;\ break;\
else if(__i)\ else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\ __M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else else
#define LF_POLY_ODD (0x29CE5C) #define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804) #define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1) #define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24) #define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
__asm__("movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax", "ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16; static inline int filter(uint32_t const x) {
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; uint32_t f;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2; f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1; f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
return BIT(0xEC57E80A, f); f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
} f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -1,92 +1,112 @@
/* crypto1.c /* crypto1.c
This program is free software; you can redistribute it and/or This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version. of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com> Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/ */
#include "crapto1.h" #include "crapto1.h"
#include <stdlib.h> #include <stdlib.h>
#include "parity.h"
#define SWAPENDIAN(x)\ #define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State *crypto1_create(uint64_t key) { #if defined(__arm__) && !defined(__linux__) && !defined(_WIN32) && !defined(__APPLE__) // bare metal ARM Proxmark lacks malloc()/free()
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for (i = 47; s && i > 0; i -= 2) { void crypto1_create(struct Crypto1State *s, uint64_t key) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); int i;
s->even = s->even << 1 | BIT(key, i ^ 7);
} for (i = 47; s && i > 0; i -= 2) {
return s; s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return;
} }
void crypto1_destroy(struct Crypto1State *state)
{ void crypto1_destroy(struct Crypto1State *state) {
free(state); state->odd = 0;
state->even = 0;
} }
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) #else
{
int i; struct Crypto1State * crypto1_create(uint64_t key) {
for (*lfsr = 0, i = 23; i >= 0; --i) { struct Crypto1State *s = malloc(sizeof (*s));
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); int i;
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
} for (i = 47; s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
} }
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted; void crypto1_destroy(struct Crypto1State *state) {
feedin ^= !!in; free(state);
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
return ret;
} }
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) #endif
{
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i) void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) {
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; int i;
for (*lfsr = 0, i = 23; i >= 0; --i) {
return ret; *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
} }
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i) uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) {
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); uint32_t feedin, t;
uint8_t ret = filter(s->odd);
return ret; feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | evenparity32(feedin);
t = s->odd, s->odd = s->even, s->even = t;
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) {
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) {
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
} }
/* prng_successor /* prng_successor
* helper used to obscure the keystream during authentication * helper used to obscure the keystream during authentication
*/ */
uint32_t prng_successor(uint32_t x, uint32_t n) uint32_t prng_successor(uint32_t x, uint32_t n) {
{ SWAPENDIAN(x);
SWAPENDIAN(x); while (n--)
while (n--) x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x); return SWAPENDIAN(x);
} }

View File

@ -37,7 +37,7 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <inttypes.h>
#include <unistd.h> #include <unistd.h>
// NFC // NFC
@ -131,7 +131,6 @@ int main(int argc, char *const argv[])
//File pointers for the keyfile //File pointers for the keyfile
FILE * fp; FILE * fp;
char line[20]; char line[20];
size_t len = 0;
char * read; char * read;
//Regexp declarations //Regexp declarations
@ -546,7 +545,7 @@ int main(int argc, char *const argv[])
nfc_close(r.pdi); nfc_close(r.pdi);
nfc_exit(context); nfc_exit(context);
if(pfKey) { if(pfKey) {
fprintf(pfKey, "%012llx;%d;%c;%d;%c", knownKey, knownSector, knownKeyLetter, unknownSector, unknownKeyLetter); fprintf(pfKey, "%012" PRIu64 ";%d;%c;%d;%c", knownKey, knownSector, knownKeyLetter, unknownSector, unknownKeyLetter);
fclose(pfKey); fclose(pfKey);
} }
return 9; return 9;
@ -883,7 +882,6 @@ get_rats_is_2k(mftag t, mfreader r)
{ {
int res; int res;
uint8_t abtRx[MAX_FRAME_LEN]; uint8_t abtRx[MAX_FRAME_LEN];
int szRxBits;
uint8_t abtRats[2] = { 0xe0, 0x50}; uint8_t abtRats[2] = { 0xe0, 0x50};
// Use raw send/receive methods // Use raw send/receive methods
if (nfc_device_set_property_bool(r.pdi, NP_EASY_FRAMING, false) < 0) { if (nfc_device_set_property_bool(r.pdi, NP_EASY_FRAMING, false) < 0) {

28
src/parity.c Normal file
View File

@ -0,0 +1,28 @@
//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// parity functions (all defined in parity.h)
//-----------------------------------------------------------------------------
#include <stdint.h>
const uint8_t OddByteParity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};

54
src/parity.h Normal file
View File

@ -0,0 +1,54 @@
//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Parity functions
//-----------------------------------------------------------------------------
// all functions defined in header file by purpose. Allows compiler optimizations.
#ifndef __PARITY_H
#define __PARITY_H
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
extern const uint8_t OddByteParity[256];
static inline bool oddparity8(const uint8_t x) {
return OddByteParity[x];
}
static inline void oddparitybuf(const uint8_t *x, size_t len, uint8_t *parity) {
memset(parity, 0x00, (len - 1) / 8 + 1);
for (int i = 0; i < len; i++)
parity[i / 8] |= oddparity8(x[i]) << (7 - (i % 8));
}
static inline bool evenparity8(const uint8_t x) {
return !OddByteParity[x];
}
static inline bool evenparity32(uint32_t x) {
#if !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
return evenparity8(x);
#else
return __builtin_parity(x);
#endif
}
static inline bool oddparity32(uint32_t x) {
#if !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
return oddparity8(x);
#else
return !__builtin_parity(x);
#endif
}
#endif /* __PARITY_H */