Basic support for RC522 detection

This commit is contained in:
Marcos Vives Del Sol 2015-06-15 22:46:47 +02:00
parent 6204340059
commit 053dc8d5f8
8 changed files with 587 additions and 219 deletions

View File

@ -20,7 +20,9 @@ libnfc_la_SOURCES = \
log-internal.h \
mirror-subr.h \
nfc-internal.h \
target-subr.h
target-subr.h \
timing.h \
timing.c
libnfc_la_LDFLAGS = -no-undefined -version-info 5:1:0 -export-symbols-regex '^nfc_|^iso14443a_|^iso14443b_|^str_nfc_|pn53x_transceive|pn532_SAMConfiguration|pn53x_read_register|pn53x_write_register'
libnfc_la_CFLAGS = @DRIVERS_CFLAGS@

View File

@ -3,108 +3,124 @@
#ifndef __NFC_CHIPS_RC522_INTERNAL_H__
#define __NFC_CHIPS_RC522_INTERNAL_H__
#define RC522_FIFO_SIZE 64
#define FIFO_SIZE 64
#define RC522_REG_CommandReg 0x01
#define RC522_REG_CommandReg_RcvOff (1 << 5)
#define RC522_REG_CommandReg_PowerDown (1 << 4)
typedef enum {
RC522_UNKNOWN = 0x00,
FM17522 = 0x88,
MFRC522_V1 = 0x91,
MFRC522_V2 = 0x92
} rc522_type;
#define RC522_REG_ComlEnReg 0x02
typedef enum {
CMD_IDLE = 0x0,
CMD_MEM = 0x1,
CMD_GENRANDOMID = 0x2,
CMD_CALCCRC = 0x3,
CMD_TRANSMIT = 0x4,
CMD_NOCMDCHANGE = 0x7,
CMD_RECEIVE = 0x8,
CMD_TRANSCEIVE = 0xC,
CMD_MFAUTHENT = 0xE,
CMD_SOFTRESET = 0xF
} rc522_cmd;
#define RC522_REG_DivlEnReg 0x03
#define REG_CommandReg 0x01
#define REG_CommandReg_RcvOff (1 << 5)
#define REG_CommandReg_PowerDown (1 << 4)
#define RC522_REG_ComIrqReg 0x04
#define REG_ComlEnReg 0x02
#define RC522_REG_DivIrqReg 0x05
#define REG_DivlEnReg 0x03
#define RC522_REG_ErrorReg 0x06
#define REG_ComIrqReg 0x04
#define RC522_REG_Status1Reg 0x07
#define REG_DivIrqReg 0x05
#define REG_DivIrqReg_MfinActIRq (1 << 4)
#define REG_DivIrqReg_CRCIRq (1 << 2)
#define RC522_REG_Status2Reg 0x08
#define RC522_REG_Status2Reg_MFCrypto1On (1 << 3)
#define REG_ErrorReg 0x06
#define RC522_REG_FIFODataReg 0x09
#define REG_Status1Reg 0x07
#define RC522_REG_FIFOLevelReg 0x0A
#define REG_Status2Reg 0x08
#define REG_Status2Reg_MFCrypto1On (1 << 3)
#define RC522_REG_WaterLevelReg 0x0B
#define REG_FIFODataReg 0x09
#define RC522_REG_ControlReg 0x0C
#define REG_FIFOLevelReg 0x0A
#define RC522_REG_BitFramingReg 0x0D
#define REG_WaterLevelReg 0x0B
#define RC522_REG_CollReg 0x0E
#define REG_ControlReg 0x0C
#define RC522_REG_ModeReg 0x11
#define REG_BitFramingReg 0x0D
#define RC522_REG_TxModeReg 0x12
#define RC522_REG_TxModeReg_TxCRCEn (1 << 7)
#define RC522_REG_TxModeReg_TxSpeed_106k (0 << 4)
#define RC522_REG_TxModeReg_TxSpeed_212k (1 << 4)
#define RC522_REG_TxModeReg_TxSpeed_424k (2 << 4)
#define RC522_REG_TxModeReg_TxSpeed_847k (3 << 4)
#define RC522_REG_TxModeReg_TxSpeed_MASK (7 << 4)
#define REG_CollReg 0x0E
#define RC522_REG_RxModeReg 0x13
#define RC522_REG_RxModeReg_RxCRCEn (1 << 7)
#define RC522_REG_RxModeReg_RxSpeed_106k (0 << 4)
#define RC522_REG_RxModeReg_RxSpeed_212k (1 << 4)
#define RC522_REG_RxModeReg_RxSpeed_424k (2 << 4)
#define RC522_REG_RxModeReg_RxSpeed_847k (3 << 4)
#define RC522_REG_RxModeReg_RxSpeed_MASK (7 << 4)
#define REG_ModeReg 0x11
#define RC522_REG_TxControlReg 0x14
#define RC522_REG_TxControlReg_Tx2RFEn (1 << 1)
#define RC522_REG_TxControlReg_Tx1RFEn (1 << 0)
#define REG_TxModeReg 0x12
#define REG_TxModeReg_TxCRCEn (1 << 7)
#define REG_TxModeReg_TxSpeed_106k (0 << 4)
#define REG_TxModeReg_TxSpeed_212k (1 << 4)
#define REG_TxModeReg_TxSpeed_424k (2 << 4)
#define REG_TxModeReg_TxSpeed_847k (3 << 4)
#define REG_TxModeReg_TxSpeed_MASK (7 << 4)
#define RC522_REG_TxASKReg 0x15
#define REG_RxModeReg 0x13
#define REG_RxModeReg_RxCRCEn (1 << 7)
#define REG_RxModeReg_RxSpeed_106k (0 << 4)
#define REG_RxModeReg_RxSpeed_212k (1 << 4)
#define REG_RxModeReg_RxSpeed_424k (2 << 4)
#define REG_RxModeReg_RxSpeed_847k (3 << 4)
#define REG_RxModeReg_RxSpeed_MASK (7 << 4)
#define RC522_REG_TxSelReg 0x16
#define REG_TxControlReg 0x14
#define REG_TxControlReg_Tx2RFEn (1 << 1)
#define REG_TxControlReg_Tx1RFEn (1 << 0)
#define RC522_REG_RxSelReg 0x17
#define REG_TxASKReg 0x15
#define RC522_REG_RxThresholdReg 0x18
#define REG_TxSelReg 0x16
#define RC522_REG_DemodReg 0x19
#define REG_RxSelReg 0x17
#define RC522_REG_MfTxReg 0x1C
#define REG_RxThresholdReg 0x18
#define RC522_REG_MfRxReg 0x1D
#define RC522_REG_MfRxReg_ParityDisable (1 << 4)
#define REG_DemodReg 0x19
#define RC522_REG_SerialSpeedReg 0x1F
#define RC522_REG_CRCResultReg 0x21
#define RC522_REG_ModWidthReg 0x24
#define RC522_REG_RFCfgReg 0x26
#define RC522_REG_GsNReg 0x27
#define RC522_REG_CWGsPReg 0x28
#define RC522_REG_ModGsPReg 0x29
#define RC522_REG_TModeReg 0x2A
#define RC522_REG_TPrescalerReg 0x2B
#define RC522_REG_TReloadReg 0x2C
#define RC522_REG_TCounterValReg 0x2E
#define RC522_REG_TestSel1Reg 0x31
#define RC522_REG_TestSel2Reg 0x32
#define RC522_REG_TestPinEnReg 0x33
#define RC522_REG_TestPinValueReg 0x34
#define RC522_REG_TestBusReg 0x35
#define RC522_REG_AutoTestReg 0x36
#define RC522_REG_VersionReg 0x37
#define RC522_REG_AnalogTestReg 0x38
#define RC522_REG_TestDAC1Reg 0x39
#define RC522_REG_TestDAC2Reg 0x3A
#define RC522_REG_TestADCReg 0x3B
#define REG_MfTxReg 0x1C
#define RC522_CMD_Idle 0x0
#define RC522_CMD_Mem 0x1
#define RC522_CMD_GenerateRandomId 0x2
#define RC522_CMD_CalcCRC 0x3
#define RC522_CMD_Transmit 0x4
#define RC522_CMD_NoCmdChange 0x7
#define RC522_CMD_Receive 0x8
#define RC522_CMD_Transceive 0xC
#define RC522_CMD_MFAuthent 0xE
#define RC522_CMD_SoftReset 0xF
#define REG_MfRxReg 0x1D
#define REG_MfRxReg_ParityDisable (1 << 4)
#define REG_SerialSpeedReg 0x1F
#define REG_CRCResultReg 0x21
#define REG_ModWidthReg 0x24
#define REG_RFCfgReg 0x26
#define REG_GsNReg 0x27
#define REG_CWGsPReg 0x28
#define REG_ModGsPReg 0x29
#define REG_TModeReg 0x2A
#define REG_TPrescalerReg 0x2B
#define REG_TReloadReg 0x2C
#define REG_TCounterValReg 0x2E
#define REG_TestSel1Reg 0x31
#define REG_TestSel2Reg 0x32
#define REG_TestPinEnReg 0x33
#define REG_TestPinValueReg 0x34
#define REG_TestBusReg 0x35
#define REG_AutoTestReg 0x36
#define REG_AutoTestReg_SelfTest_Disabled (0x0 << 0)
#define REG_AutoTestReg_SelfTest_Enabled (0x9 << 0)
#define REG_AutoTestReg_SelfTest_MASK (0xF << 0)
#define REG_VersionReg 0x37
#define REG_AnalogTestReg 0x38
#define REG_TestDAC1Reg 0x39
#define REG_TestDAC2Reg 0x3A
#define REG_TestADCReg 0x3B
#endif

View File

@ -23,12 +23,11 @@
#include "nfc/nfc.h"
#include "nfc-internal.h"
#include "timing.h"
#define LOG_CATEGORY "libnfc.chip.rc522"
#define LOG_GROUP NFC_LOG_GROUP_CHIP
#define RC522_TIMEOUT 5
const nfc_modulation_type rc522_initiator_modulation[] = { NMT_ISO14443A, 0 };
const nfc_modulation_type rc522_target_modulation[] = { 0 };
@ -36,6 +35,7 @@ const nfc_baud_rate rc522_iso14443a_supported_baud_rates[] = { NBR_847, NBR_424,
struct rc522_chip_data {
const struct rc522_io * io;
rc522_type version;
};
#define CHIP_DATA(x) ((struct rc522_chip_data *) (x)->chip_data)
@ -48,14 +48,51 @@ int rc522_data_new(struct nfc_device * pnd, const struct rc522_io * io) {
}
CHIP_DATA(pnd)->io = io;
CHIP_DATA(pnd)->version = RC522_UNKNOWN;
return NFC_SUCCESS;
}
void rc522_data_free(struct nfc_device * pnd) {
free(pnd->chip_data);
}
int rc522_read_bulk(struct nfc_device * pnd, uint8_t reg, uint8_t * val, size_t len) {
int ret = CHIP_DATA(pnd)->io->read(pnd, reg, val, len);
if (ret) {
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "Unable to read register %02X!", reg);
return ret;
}
#ifdef LOG
char action[8];
snprintf(action, sizeof(action), "RD %02X", reg);
LOG_HEX(NFC_LOG_GROUP_CHIP, action, val, len);
#endif
return NFC_SUCCESS;
}
int rc522_write_bulk(struct nfc_device * pnd, uint8_t reg, const uint8_t * val, size_t len) {
int ret = CHIP_DATA(pnd)->io->write(pnd, reg, val, len);
if (ret) {
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "Unable to write register %02X!", reg);
return ret;
}
#ifdef LOG
char action[8];
snprintf(action, sizeof(action), "WR %02X", reg);
LOG_HEX(NFC_LOG_GROUP_CHIP, action, val, len);
#endif
return NFC_SUCCESS;
}
int rc522_read_reg(struct nfc_device * pnd, uint8_t reg) {
uint8_t val;
int ret;
int ret = CHIP_DATA(pnd)->io->read(pnd, reg, &val, 1);
if (ret < 0) {
if ((ret = rc522_read_bulk(pnd, reg, &val, 1)) < 0) {
return ret;
}
@ -72,32 +109,99 @@ int rc522_write_reg(struct nfc_device * pnd, uint8_t reg, uint8_t val, uint8_t m
val = (val & mask) | (oldval & ~mask);
}
return CHIP_DATA(pnd)->io->write(pnd, reg, &val, 1);
return rc522_write_bulk(pnd, reg, &val, 1);
}
int rc522_start_command(struct nfc_device * pnd, rc522_cmd cmd) {
bool needsRX = false;
// Disabling RX saves energy, so based on the command we'll also update the RxOff flag
switch (cmd) {
case CMD_IDLE:
case CMD_MEM:
case CMD_GENRANDOMID:
case CMD_CALCCRC:
case CMD_TRANSMIT:
case CMD_SOFTRESET:
break;
case CMD_RECEIVE:
case CMD_TRANSCEIVE:
case CMD_MFAUTHENT:
needsRX = true;
break;
case CMD_NOCMDCHANGE:
return NFC_SUCCESS;
default:
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "Attempted to execute non-existant command: %02X", cmd);
pnd->last_error = NFC_ESOFT;
return pnd->last_error;
}
uint8_t regval = cmd;
if (!needsRX) {
regval |= REG_CommandReg_RcvOff;
}
return rc522_write_reg(pnd, REG_CommandReg, regval, 0xFF);
}
int rc522_wait_wakeup(struct nfc_device * pnd) {
// NXP does not mention in the datasheet how much time does it take for RC522 to come back to life, so we'll wait up to 50ms
timeout_t to;
timeout_init(&to, 50);
// rc522_read_reg updates last_error. Backup it to ignore timeouts
int last_error = pnd->last_error;
while (timeout_check(&to)) {
int ret = rc522_read_reg(pnd, REG_CommandReg);
if (ret < 0 && ret != NFC_ETIMEOUT) {
return ret;
}
// If the powerdown bit is zero the RC522 is ready to kick asses!
if ((ret & REG_CommandReg_PowerDown) == 0) {
pnd->last_error = last_error;
return NFC_SUCCESS;
}
}
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "rc522_wait_wakeup timeout!");
pnd->last_error = NFC_ETIMEOUT;
return pnd->last_error;
}
int rc522_soft_reset(struct nfc_device * pnd) {
return
rc522_start_command(pnd, CMD_SOFTRESET) ||
rc522_wait_wakeup(pnd);
}
int rc522_set_baud_rate(struct nfc_device * pnd, nfc_baud_rate speed) {
uint8_t txVal, rxVal;
int ret;
switch (speed) {
case NBR_106:
txVal = RC522_REG_TxModeReg_TxSpeed_106k;
rxVal = RC522_REG_RxModeReg_RxSpeed_106k;
txVal = REG_TxModeReg_TxSpeed_106k;
rxVal = REG_RxModeReg_RxSpeed_106k;
break;
case NBR_212:
txVal = RC522_REG_TxModeReg_TxSpeed_212k;
rxVal = RC522_REG_RxModeReg_RxSpeed_212k;
txVal = REG_TxModeReg_TxSpeed_212k;
rxVal = REG_RxModeReg_RxSpeed_212k;
break;
case NBR_424:
txVal = RC522_REG_TxModeReg_TxSpeed_424k;
rxVal = RC522_REG_RxModeReg_RxSpeed_424k;
txVal = REG_TxModeReg_TxSpeed_424k;
rxVal = REG_RxModeReg_RxSpeed_424k;
break;
case NBR_847:
txVal = RC522_REG_TxModeReg_TxSpeed_847k;
rxVal = RC522_REG_RxModeReg_RxSpeed_847k;
txVal = REG_TxModeReg_TxSpeed_847k;
rxVal = REG_RxModeReg_RxSpeed_847k;
break;
default:
@ -105,8 +209,8 @@ int rc522_set_baud_rate(struct nfc_device * pnd, nfc_baud_rate speed) {
}
return
rc522_write_reg(pnd, RC522_REG_TxModeReg, txVal, RC522_REG_TxModeReg_TxSpeed_MASK) ||
rc522_write_reg(pnd, RC522_REG_RxModeReg, rxVal, RC522_REG_RxModeReg_RxSpeed_MASK);
rc522_write_reg(pnd, REG_TxModeReg, txVal, REG_TxModeReg_TxSpeed_MASK) ||
rc522_write_reg(pnd, REG_RxModeReg, rxVal, REG_RxModeReg_RxSpeed_MASK);
}
int rc522_initiator_select_passive_target_ext(struct nfc_device * pnd, const nfc_modulation nm, const uint8_t * pbtInitData, const size_t szInitData, nfc_target * pnt, int timeout)
@ -173,8 +277,9 @@ int rc522_set_property_bool(struct nfc_device * pnd, const nfc_property property
return NFC_SUCCESS;
}
ret = rc522_write_reg(pnd, RC522_REG_TxModeReg, enable ? ~0 : 0, RC522_REG_TxModeReg_TxCRCEn) ||
rc522_write_reg(pnd, RC522_REG_RxModeReg, enable ? ~0 : 0, RC522_REG_RxModeReg_RxCRCEn);
ret =
rc522_write_reg(pnd, REG_TxModeReg, enable ? ~0 : 0, REG_TxModeReg_TxCRCEn) ||
rc522_write_reg(pnd, REG_RxModeReg, enable ? ~0 : 0, REG_RxModeReg_RxCRCEn);
if (ret) {
return ret;
}
@ -187,7 +292,7 @@ int rc522_set_property_bool(struct nfc_device * pnd, const nfc_property property
return NFC_SUCCESS;
}
ret = rc522_write_reg(pnd, RC522_REG_MfRxReg, enable ? 0 : ~0, RC522_REG_MfRxReg_ParityDisable);
ret = rc522_write_reg(pnd, REG_MfRxReg, enable ? 0 : ~0, REG_MfRxReg_ParityDisable);
if (ret) {
return ret;
}
@ -200,10 +305,10 @@ int rc522_set_property_bool(struct nfc_device * pnd, const nfc_property property
return NFC_SUCCESS;
case NP_ACTIVATE_FIELD:
return rc522_write_reg(pnd, RC522_REG_TxControlReg, enable ? ~0 : 0, RC522_REG_TxControlReg_Tx2RFEn | RC522_REG_TxControlReg_Tx1RFEn);
return rc522_write_reg(pnd, REG_TxControlReg, enable ? ~0 : 0, REG_TxControlReg_Tx2RFEn | REG_TxControlReg_Tx1RFEn);
case NP_ACTIVATE_CRYPTO1:
return rc522_write_reg(pnd, RC522_REG_Status2Reg, enable ? ~0 : 0, RC522_REG_Status2Reg_MFCrypto1On);
return rc522_write_reg(pnd, REG_Status2Reg, enable ? ~0 : 0, REG_Status2Reg_MFCrypto1On);
case NP_FORCE_ISO14443_A:
// ISO14443-A is the only mode supported by MFRC522
@ -214,8 +319,13 @@ int rc522_set_property_bool(struct nfc_device * pnd, const nfc_property property
return NFC_SUCCESS;
}
return rc522_set_baud_rate(pnd, NBR_106);
int ret = rc522_set_baud_rate(pnd, NBR_106);
if (ret) {
pnd->last_error = ret;
}
return ret;
case NP_ACCEPT_MULTIPLE_FRAMES:
case NP_AUTO_ISO14443_4:
case NP_ACCEPT_INVALID_FRAMES:
case NP_INFINITE_SELECT:
@ -223,9 +333,11 @@ int rc522_set_property_bool(struct nfc_device * pnd, const nfc_property property
case NP_TIMEOUT_COMMAND:
case NP_TIMEOUT_ATR:
case NP_TIMEOUT_COM:
pnd->last_error = NFC_EINVARG;
return NFC_EINVARG;
}
pnd->last_error = NFC_EINVARG;
return NFC_EINVARG;
}
@ -234,8 +346,116 @@ int rc522_set_property_int(struct nfc_device * pnd, const nfc_property property,
return NFC_ENOTIMPL;
}
int rc522_idle(struct nfc_device * pnd) {
// Set idle and disable RX demodulator to save energy
return rc522_write_reg(pnd, RC522_REG_CommandReg, RC522_CMD_Idle | RC522_REG_CommandReg_PowerDown, 0xFF);
int rc522_abort(struct nfc_device * pnd) {
return rc522_start_command(pnd, CMD_IDLE);
}
int rc522_powerdown(struct nfc_device * pnd) {
return rc522_write_reg(pnd, REG_CommandReg, REG_CommandReg_RcvOff | REG_CommandReg_PowerDown | CMD_IDLE, 0xFF);
}
// NXP MFRC522 datasheet section 16.1.1
const uint8_t MFRC522_V1_SELFTEST[FIFO_SIZE] = {
0x00, 0xC6, 0x37, 0xD5, 0x32, 0xB7, 0x57, 0x5C, 0xC2, 0xD8, 0x7C, 0x4D, 0xD9, 0x70, 0xC7, 0x73,
0x10, 0xE6, 0xD2, 0xAA, 0x5E, 0xA1, 0x3E, 0x5A, 0x14, 0xAF, 0x30, 0x61, 0xC9, 0x70, 0xDB, 0x2E,
0x64, 0x22, 0x72, 0xB5, 0xBD, 0x65, 0xF4, 0xEC, 0x22, 0xBC, 0xD3, 0x72, 0x35, 0xCD, 0xAA, 0x41,
0x1F, 0xA7, 0xF3, 0x53, 0x14, 0xDE, 0x7E, 0x02, 0xD9, 0x0F, 0xB5, 0x5E, 0x25, 0x1D, 0x29, 0x79
};
const uint8_t MFRC522_V2_SELFTEST[FIFO_SIZE] = {
0x00, 0xEB, 0x66, 0xBA, 0x57, 0xBF, 0x23, 0x95, 0xD0, 0xE3, 0x0D, 0x3D, 0x27, 0x89, 0x5C, 0xDE,
0x9D, 0x3B, 0xA7, 0x00, 0x21, 0x5B, 0x89, 0x82, 0x51, 0x3A, 0xEB, 0x02, 0x0C, 0xA5, 0x00, 0x49,
0x7C, 0x84, 0x4D, 0xB3, 0xCC, 0xD2, 0x1B, 0x81, 0x5D, 0x48, 0x76, 0xD5, 0x71, 0x61, 0x21, 0xA9,
0x86, 0x96, 0x83, 0x38, 0xCF, 0x9D, 0x5B, 0x6D, 0xDC, 0x15, 0xBA, 0x3E, 0x7D, 0x95, 0x3B, 0x2F
};
// Extracted from a FM17522 with version 0x88. Fudan Semiconductor datasheet does not include it, though.
const uint8_t FM17522_SELFTEST[FIFO_SIZE] = {
0x00, 0xD6, 0x78, 0x8C, 0xE2, 0xAA, 0x0C, 0x18, 0x2A, 0xB8, 0x7A, 0x7F, 0xD3, 0x6A, 0xCF, 0x0B,
0xB1, 0x37, 0x63, 0x4B, 0x69, 0xAE, 0x91, 0xC7, 0xC3, 0x97, 0xAE, 0x77, 0xF4, 0x37, 0xD7, 0x9B,
0x7C, 0xF5, 0x3C, 0x11, 0x8F, 0x15, 0xC3, 0xD7, 0xC1, 0x5B, 0x00, 0x2A, 0xD0, 0x75, 0xDE, 0x9E,
0x51, 0x64, 0xAB, 0x3E, 0xE9, 0x15, 0xB5, 0xAB, 0x56, 0x9A, 0x98, 0x82, 0x26, 0xEA, 0x2A, 0x62
};
int rc522_self_test(struct nfc_device * pnd) {
int version = rc522_read_reg(pnd, REG_VersionReg);
if (version < 0) {
return version;
}
const uint8_t * correct;
switch (version) {
case MFRC522_V1:
correct = MFRC522_V1_SELFTEST;
break;
case MFRC522_V2:
correct = MFRC522_V2_SELFTEST;
break;
case FM17522:
correct = FM17522_SELFTEST;
break;
default:
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "Unknown chip version: 0x%02X", version);
return NFC_ECHIP;
}
int ret;
uint8_t zeroes[25];
memset(zeroes, 0x00, sizeof(zeroes));
// MFRC522 datasheet section 16.1.1
ret =
// 1. Perform a soft reset
rc522_soft_reset(pnd) ||
// 2. Clear the internal buffer by writing 25 bytes of 0x00 and execute the Mem command
rc522_write_bulk(pnd, REG_FIFODataReg, zeroes, sizeof(zeroes)) ||
rc522_start_command(pnd, CMD_MEM) ||
// 3. Enable the self test by writing 0x09 to the AutoTestReg register
rc522_write_reg(pnd, REG_AutoTestReg, REG_AutoTestReg_SelfTest_Enabled, REG_AutoTestReg_SelfTest_MASK) ||
// 4. Write 0x00h to the FIFO buffer
rc522_write_reg(pnd, REG_FIFODataReg, 0x00, 0xFF) ||
// 5. Start the self test with the CalcCRC command
rc522_start_command(pnd, CMD_CALCCRC);
if (ret) {
return ret;
}
// 6. Wait for the RC522 to calculate the selftest values
// The official datasheet does not mentions how much time does it take, let's use 5ms
timeout_t to;
timeout_init(&to, 5);
while (1) {
if (!timeout_check(&to)) {
return NFC_ETIMEOUT;
}
if ((ret = rc522_read_reg(pnd, REG_DivIrqReg)) < 0) {
return ret;
}
// If the RC522 has finished calculating the CRC proceed
if (ret & REG_DivIrqReg_CRCIRq) {
break;
}
}
uint8_t response[FIFO_SIZE];
ret =
// 7. Read selftest result
rc522_read_bulk(pnd, REG_FIFODataReg, response, FIFO_SIZE) ||
// 8. Disable selftest operation mode
rc522_write_reg(pnd, REG_AutoTestReg, REG_AutoTestReg_SelfTest_Disabled, REG_AutoTestReg_SelfTest_MASK);
if (ret) {
return ret;
}
if (memcmp(correct, response, FIFO_SIZE) != 0) {
return NFC_ECHIP;
}
CHIP_DATA(pnd)->version = version;
return NFC_SUCCESS;
}

View File

@ -28,10 +28,15 @@ struct rc522_io {
};
int rc522_data_new(struct nfc_device * pnd, const struct rc522_io * io);
void rc522_data_free(struct nfc_device * pnd);
int rc522_self_test(struct nfc_device * pnd);
int rc522_wait_wakeup(struct nfc_device * pnd);
int rc522_get_supported_modulation(nfc_device * pnd, const nfc_mode mode, const nfc_modulation_type ** const supported_mt);
int rc522_get_supported_baud_rate(nfc_device * pnd, const nfc_mode mode, const nfc_modulation_type nmt, const nfc_baud_rate ** const supported_br);
int rc522_set_property_bool(struct nfc_device * pnd, const nfc_property property, const bool enable);
int rc522_set_property_int(struct nfc_device * pnd, const nfc_property property, const int value);
int rc522_idle(struct nfc_device * pnd);
int rc522_abort(struct nfc_device * pnd);
int rc522_powerdown(struct nfc_device * pnd);
#endif

View File

@ -28,6 +28,8 @@
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <assert.h>
#include <nfc/nfc.h>
@ -51,98 +53,90 @@ struct rc522_uart_data {
#define DRIVER_DATA(pnd) ((struct rc522_uart_data*)(pnd->driver_data))
static size_t
rc522_uart_scan(const nfc_context *context, nfc_connstring connstrings[], const size_t connstrings_len)
{
size_t device_found = 0;
serial_port sp;
char **acPorts = uart_list_ports();
const char *acPort;
int iDevice = 0;
while ((acPort = acPorts[iDevice++])) {
sp = uart_open(acPort);
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_DEBUG, "Trying to find RC522 device on serial port: %s at %d baud.", acPort, RC522_UART_DEFAULT_SPEED);
if ((sp != INVALID_SERIAL_PORT) && (sp != CLAIMED_SERIAL_PORT)) {
// We need to flush input to be sure first reply does not comes from older byte transceive
uart_flush_input(sp, true);
// Serial port claimed but we need to check if a RC522_UART is opened.
uart_set_speed(sp, RC522_UART_DEFAULT_SPEED);
nfc_connstring connstring;
snprintf(connstring, sizeof(nfc_connstring), "%s:%s:%"PRIu32, RC522_UART_DRIVER_NAME, acPort, RC522_UART_DEFAULT_SPEED);
nfc_device *pnd = nfc_device_new(context, connstring);
if (!pnd) {
perror("malloc");
uart_close(sp);
iDevice = 0;
while ((acPort = acPorts[iDevice++])) {
free((void *)acPort);
}
free(acPorts);
return 0;
}
pnd->driver = &rc522_uart_driver;
pnd->driver_data = sp;
// Alloc and init chip's data
if (rc522_data_new(pnd, &rc522_uart_io) == NULL) {
perror("rc522_data_new");
uart_close(DRIVER_DATA(pnd)->port);
nfc_device_free(pnd);
iDevice = 0;
while ((acPort = acPorts[iDevice++])) {
free((void *)acPort);
}
free(acPorts);
return 0;
}
// SAMConfiguration command if needed to wakeup the chip and rc522_SAMConfiguration check if the chip is a RC522
CHIP_DATA(pnd)->type = RC522;
// This device starts in LowVBat power mode
CHIP_DATA(pnd)->power_mode = LOWVBAT;
// Check communication using "Diagnose" command, with "Communication test" (0x00)
int res = rc522_check_communication(pnd);
uart_close(DRIVER_DATA(pnd)->port);
rc522_data_free(pnd);
nfc_device_free(pnd);
if (res < 0) {
continue;
}
memcpy(connstrings[device_found], connstring, sizeof(nfc_connstring));
device_found++;
// Test if we reach the maximum "wanted" devices
if (device_found >= connstrings_len)
break;
}
}
iDevice = 0;
while ((acPort = acPorts[iDevice++])) {
free((void *)acPort);
}
free(acPorts);
return device_found;
}
void rc522_uart_close(nfc_device * pnd) {
rc522_idle(pnd);
// rc522_idle(pnd);
// Release UART port
uart_close(DRIVER_DATA(pnd)->port);
free(DRIVER_DATA(pnd));
rc522_data_free(pnd);
nfc_device_free(pnd);
}
size_t rc522_uart_scan(const nfc_context * context, nfc_connstring connstrings[], const size_t connstrings_len) {
size_t device_found = 0;
serial_port sp;
char ** acPorts = uart_list_ports();
const char * acPort;
size_t iDevice = 0;
while ((acPort = acPorts[iDevice++])) {
sp = uart_open(acPort);
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_DEBUG, "Trying to find RC522 device on serial port: %s at %d baud.", acPort, RC522_UART_DEFAULT_SPEED);
if (sp == INVALID_SERIAL_PORT || sp == CLAIMED_SERIAL_PORT) {
continue;
}
// We need to flush input to be sure first reply does not comes from older byte transceive
uart_flush_input(sp, true);
// Serial port claimed but we need to check if a RC522_UART is opened.
uart_set_speed(sp, RC522_UART_DEFAULT_SPEED);
nfc_connstring connstring;
snprintf(connstring, sizeof(nfc_connstring), "%s:%s:%"PRIu32, RC522_UART_DRIVER_NAME, acPort, RC522_UART_DEFAULT_SPEED);
nfc_device * pnd = nfc_device_new(context, connstring);
if (!pnd) {
perror("nfc_device_new");
uart_close(sp);
nfc_device_free(pnd);
uart_list_free(acPorts);
return 0;
}
pnd->driver = &rc522_uart_driver;
pnd->driver_data = malloc(sizeof(struct rc522_uart_data));
if (!pnd->driver_data) {
perror("malloc");
uart_close(sp);
nfc_device_free(pnd);
uart_list_free(acPorts);
return 0;
}
DRIVER_DATA(pnd)->port = sp;
// Alloc and init chip's data
if (rc522_data_new(pnd, &rc522_uart_io)) {
perror("rc522_data_new");
uart_close(sp);
nfc_device_free(pnd);
uart_list_free(acPorts);
return 0;
}
// Check communication using self test
int res = rc522_self_test(pnd);
rc522_uart_close(pnd);
if (res < 0) {
continue;
}
memcpy(connstrings[device_found], connstring, sizeof(nfc_connstring));
device_found++;
// Test if we reach the maximum "wanted" devices
if (device_found >= connstrings_len)
break;
}
uart_list_free(acPorts);
return device_found;
}
struct nfc_device * rc522_uart_open(const nfc_context * context, const nfc_connstring connstring) {
char * port_str;
char * baud_str;
uint32_t baudrate;
char * endptr;
int decodelvl = connstring_decode(connstring, RC522_UART_DRIVER_NAME, NULL, &port_str, &baud_str);
switch (decodelvl) {
@ -151,20 +145,20 @@ struct nfc_device * rc522_uart_open(const nfc_context * context, const nfc_conns
break;
case 3: // Got port and baud rate
char * endptr;
baudrate = (uint32_t) strtol(speed_s, &endptr, 10);
// TODO: set baud rate AFTER initialization
baudrate = (uint32_t) strtol(baud_str, &endptr, 10);
if (*endptr != '\0') {
free(port_str);
free(bps_str);
free(baud_str);
return NULL;
}
free(bps_str);
free(baud_str);
break;
default: // Got unparseable gibberish
free(port_str);
free(bps_str);
free(baud_str);
return NULL;
}
@ -172,7 +166,7 @@ struct nfc_device * rc522_uart_open(const nfc_context * context, const nfc_conns
struct nfc_device * pnd = NULL;
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_DEBUG, "Attempt to open: %s at %d baud.", port_str, baudrate);
sp = uart_open(ndd.port);
sp = uart_open(port_str);
if (sp == INVALID_SERIAL_PORT) {
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "Invalid serial port: %s", port_str);
@ -212,51 +206,53 @@ struct nfc_device * rc522_uart_open(const nfc_context * context, const nfc_conns
DRIVER_DATA(pnd)->port = sp;
// Alloc and init chip's data
if (rc522_data_new(pnd, &rc522_uart_io) == NULL) {
if (!rc522_data_new(pnd, &rc522_uart_io)) {
perror("rc522_data_new");
uart_close(sp);
nfc_device_free(pnd);
return NULL;
}
if (rc522_check_communication(pnd) < 0) {
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "rc522_check_communication error");
if (rc522_self_test(pnd)) {
log_put(LOG_GROUP, LOG_CATEGORY, NFC_LOG_PRIORITY_ERROR, "rc522_self_test error");
rc522_uart_close(pnd);
return NULL;
}
rc522_init(pnd);
return pnd;
}
int rc522_uart_wakeup(struct nfc_device *pnd) {
int rc522_uart_wakeup(struct nfc_device * pnd) {
int ret;
/* High Speed Unit (HSU) wake up consist to send 0x55 and wait a "long" delay for RC522 being wakeup. */
const uint8_t rc522_wakeup_preamble[] = { 0x55, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
int res = uart_send(DRIVER_DATA(pnd)->port, rc522_wakeup_preamble, sizeof(rc522_wakeup_preamble), 0);
CHIP_DATA(pnd)->power_mode = NORMAL; // RC522 should now be awake
return res;
if ((ret = uart_send(DRIVER_DATA(pnd)->port, rc522_wakeup_preamble, sizeof(rc522_wakeup_preamble), 0)) < 0) {
return ret;
}
return rc522_wait_wakeup(pnd);
}
#define READ 1
#define WRITE 0
uint8_t rc522_uart_pack(int reg, int op) {
assert(reg < 64);
assert(op == READ | op == WRITE);
assert(op == READ || op == WRITE);
return op << 7 | reg;
}
int rc522_uart_read(struct nfc_device * pnd, uint8_t reg, uint8_t * data, size_t size) {
uint8_t cmd = rc522_uart_pack(reg, READ);
int ret;
while (size > 0) {
pnd->last_error = uart_send(pnd->driver_data, &cmd, 1, RC522_UART_IO_TIMEOUT);
if (pnd->last_error < 0) {
if ((ret = uart_send(pnd->driver_data, &cmd, 1, RC522_UART_IO_TIMEOUT)) < 0) {
goto error;
}
pnd->last_error = uart_receive(pnd->driver_data, data, 1, RC522_UART_IO_TIMEOUT);
if (pnd->last_error < 0) {
if ((ret = uart_receive(pnd->driver_data, data, 1, NULL, RC522_UART_IO_TIMEOUT)) < 0) {
goto error;
}
@ -271,7 +267,7 @@ error:
return pnd->last_error;
}
int rc522_uart_write(struct nfc_device * pnd, uint8_t reg, uint8_t * data, size_t size) {
int rc522_uart_write(struct nfc_device * pnd, uint8_t reg, const uint8_t * data, size_t size) {
uint8_t cmd = rc522_uart_pack(reg, WRITE);
while (size > 0) {
@ -283,7 +279,7 @@ int rc522_uart_write(struct nfc_device * pnd, uint8_t reg, uint8_t * data, size_
// Second: wait for a reply
uint8_t reply;
pnd->last_error = uart_receive(pnd->driver_data, &reply, 1, RC522_UART_IO_TIMEOUT);
pnd->last_error = uart_receive(pnd->driver_data, &reply, 1, NULL, RC522_UART_IO_TIMEOUT);
if (pnd->last_error < 0) {
return pnd->last_error;
}
@ -322,20 +318,20 @@ const struct nfc_driver rc522_uart_driver = {
.scan = rc522_uart_scan,
.open = rc522_uart_open,
.close = rc522_uart_close,
.strerror = rc522_strerror,
// .strerror = rc522_strerror,
.initiator_init = rc522_initiator_init,
// .initiator_init = rc522_initiator_init,
// MFRC522 has no secure element
.initiator_init_secure_element = NULL,
.initiator_select_passive_target = rc522_initiator_select_passive_target,
.initiator_poll_target = rc522_initiator_poll_target,
// .initiator_select_passive_target = rc522_initiator_select_passive_target,
// .initiator_poll_target = rc522_initiator_poll_target,
.initiator_select_dep_target = NULL,
.initiator_deselect_target = rc522_initiator_deselect_target,
.initiator_transceive_bytes = rc522_initiator_transceive_bytes,
.initiator_transceive_bits = rc522_initiator_transceive_bits,
.initiator_transceive_bytes_timed = rc522_initiator_transceive_bytes_timed,
.initiator_transceive_bits_timed = rc522_initiator_transceive_bits_timed,
.initiator_target_is_present = rc522_initiator_target_is_present,
// .initiator_deselect_target = rc522_initiator_deselect_target,
// .initiator_transceive_bytes = rc522_initiator_transceive_bytes,
// .initiator_transceive_bits = rc522_initiator_transceive_bits,
// .initiator_transceive_bytes_timed = rc522_initiator_transceive_bytes_timed,
// .initiator_transceive_bits_timed = rc522_initiator_transceive_bits_timed,
// .initiator_target_is_present = rc522_initiator_target_is_present,
// MFRC522 is unable to work as target
.target_init = NULL,
@ -348,10 +344,10 @@ const struct nfc_driver rc522_uart_driver = {
.device_set_property_int = rc522_set_property_int,
.get_supported_modulation = rc522_get_supported_modulation,
.get_supported_baud_rate = rc522_get_supported_baud_rate,
.device_get_information_about = rc522_get_information_about,
// .device_get_information_about = rc522_get_information_about,
.abort_command = rc522_idle,
.idle = rc522_idle,
.powerdown = rc522_softdown,
.abort_command = rc522_abort,
// .idle = rc522_idle,
.powerdown = rc522_powerdown,
};

View File

@ -118,6 +118,9 @@
# include "drivers/pn532_i2c.h"
#endif /* DRIVER_PN532_I2C_ENABLED */
#if defined (DRIVER_RC522_UART_ENABLED)
# include "drivers/rc522_uart.h"
#endif /* DRIVER_RC522_UART_ENABLED */
#define LOG_CATEGORY "libnfc.general"
#define LOG_GROUP NFC_LOG_GROUP_GENERAL
@ -156,6 +159,9 @@ nfc_drivers_init(void)
#if defined (DRIVER_ARYGON_ENABLED)
nfc_register_driver(&arygon_driver);
#endif /* DRIVER_ARYGON_ENABLED */
#if defined (DRIVER_RC522_UART_ENABLED)
nfc_register_driver(&rc522_uart_driver);
#endif /* DRIVER_RC522_UART_ENABLED */
}
static int

75
libnfc/timing.c Normal file
View File

@ -0,0 +1,75 @@
/*-
* Free/Libre Near Field Communication (NFC) library
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*/
#include "timing.h"
#include <assert.h>
#define MILLIS_PER_SEC 1000
#define MICROS_PER_SEC 1000000
#define NANOS_PER_SEC 1000000000
// Use Windows' API directly if Win32 for highest possible resolution
#if defined(CYGWIN) || defined(_WIN32)
# include <windows.h>
static uint64_t timer_hz = 0;
ms_t time_millis() {
if (!timer_hz) {
// Windows API states that the frequency is fixed at boot and therefore can be cached safely
assert(QueryPerformanceFrequency((LARGE_INTEGER *) &timer_hz));
}
uint64_t ticks;
assert(QueryPerformanceCounter((LARGE_INTEGER *) &ticks));
return MILLIS_PER_SEC * ticks / timer_hz;
}
// If not Windows use POSIX methods
#else
# include <time.h>
ms_t time_millis() {
struct timespec ts;
// CLOCK_MONOTONIC_RAW isn't affected by NTP updates and therefore really monotonic, but it's Linux-specific
# ifdef CLOCK_MONOTONIC_RAW
clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
# else
clock_gettime(CLOCK_MONOTONIC, &ts);
# endif
return (ms_t) ts.tv_sec * MILLIS_PER_SEC + ts.tv_nsec / (NANOS_PER_SEC / MILLIS_PER_SEC);
}
#endif
void timeout_init(timeout_t * to, unsigned int millis) {
*to = time_millis() + millis;
}
bool timeout_check(timeout_t * to) {
if (*to == 0) {
return false;
}
ms_t now = time_millis();
if (now >= *to) {
*to = 0;
}
return true;
}

48
libnfc/timing.h Normal file
View File

@ -0,0 +1,48 @@
/*-
* Free/Libre Near Field Communication (NFC) library
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*/
#ifndef __NFC_TIMING_H__
#define __NFC_TIMING_H__
#include <stdint.h>
#include <stdbool.h>
typedef uint64_t ms_t;
/**
* @brief Calculates a timestamp from a unspecified start with millisecond accuracy
* @return Time in milliseconds
*/
ms_t time_millis();
typedef ms_t timeout_t;
/**
* @brief Initializes a timeout
* @param to Timeout handle
* @param millis Minimum expiration time in milliseconds
*/
void timeout_init(timeout_t * to, unsigned int millis);
/**
* @brief Checks if the timeout has NOT expired
* @param to Timeout handle
* @return True if the timeout has NOT expired
*/
bool timeout_check(timeout_t * to);
#endif